The solid, liquid and gas phases of water would have the same structure of the molecules since they are same substance. The only difference would be the distances of the molecules in the container. For a ice, the molecules are close to each other where the molecules vibrate only in place. For liquid, the molecules are freely moving and are at some distance with each other but not that far away with each other. Steam, on the other hand, would have molecules that are very far from each other and are freely moving in the whole container. As the container is heated, the size of the molecules would not change. It is only the volume that has changed. Also, the mass is the same since there is no outflow of the substances.
Given:-
- Time taken by the particle (t) = 6 s
- Average speed (v) = 40 m/s
To Find: Distance (s) travelled by the particle.
We know,
s = vt
where,
- s = Distance travelled,
- v = Speed &
- t = Time taken.
Putting the values,
s = (40 m/s)(6 s)
→ s = 240 m ...(Ans.)
Answer:2155 J
Explanation:
Given
Change in Internal energy
i.e. decrease in Internal Energy
Heat added to system 
According First law for a system



Thus 2155 J of work is done by system
Answer:
he wavelength is different (greater) than the wavelength of the incident photon
Explanation:
The Compton effect is the scattering of a photon by an electron, this process is analyzed using the conservation of momentum, in which we assume that initially the electron is at rest and after the collision it recedes, therefore the energy of the incident photon decreases and consequently its wavelength changes
To complete the sentence we use the wavelength is different (greater) than the wavelength of the incident photon
Answer:
It's option d - Negative acceleration
Explanation:
- Let's start by demonstrate why <em>it's not option b - Speed : </em>Speed is a scalar quantity so it can not be represented by a vector
- Let's check that <em>the green vectors represent velocity</em> (velocity is a vector quantity, velocity is a direction aware, while speed is just a scalar)
- Now let's show that the circled vectors are acceleration vectors:
Mathematically position X , velocity V and acceleration A are:
and 
Where X, V, A are vectors and
indicates the derivate a of a time is equal to b.
So, this show that acceleration is a rate respect of time of velocity ⇒ When acceleration is positive, velocity increments, when acceleration is negative, velocity decrements.
<em>The above explanation correspond to the motion map shown, getting demonstrated that the answer is D - Negative acceleration </em>