Light can be seen as an electromagnetic wave.
What happens when two waves, with the same frequency, superpose is called interference.
If at a certain point two waves arrive both with a crest, we have constructive interference and the amplitudes sum up, reaching the maximum value, resulting in bright spots.
If at a certain point one of the waves arrives with a crest and the other wave arrives with a trough, we have destructive interference, and the two amplitudes cancel out, resulting in dark spots.
Therefore, t<span>he dark bands on the wall are from destructive interference.</span>
I think the second choose, energy to be stored.
Frequency = 1/period. ... 1 / 18 sec = (1/18) per sec. That's 0.056 per sec or 0.056 Hz. (rounded)
(5.6 x 10^-2 Hz)
Answer:
x = 3.76 cm
y = 3.76 cm
Explanation:
This composite shape can be modeled as a square (7.2 cm × 7.2 cm) minus a quarter circle in the lower left corner (3.6 cm radius) and a right triangle in the upper right corner (3.6 cm × 3.6 cm).
The centroid of a square (or any rectangle) is at x = b/2 and y = h/2.
The centroid of a quarter circle is at x = y = 4r/(3π).
The centroid of a right triangle is at x = b/3 and y = h/3.
Build a table listing each shape, the coordinates of its centroid (x and y), and its area (A). Use negative areas for the shapes that are being subtracted.
Next, multiply each coordinate by the area (Ax and Ay), sum the results (∑Ax and ∑Ay), then divide by the total area (∑Ax / ∑A and ∑Ay / ∑A). The result will be the x and y coordinates of the center of mass.
See attached image.