Divide the number of cars by the number of hours:
288 / 9 = 32 cars per hour.
Answer:
a) 
b) 
And replacing we got:
![P(X \geq 3) = 1- [0.2+0.3+0.1]= 0.4](https://tex.z-dn.net/?f=%20P%28X%20%5Cgeq%203%29%20%3D%201-%20%5B0.2%2B0.3%2B0.1%5D%3D%200.4)
c) 
d) 
e) 
f) 
And replacing we got:

And the variance would be:
![Var(X0 =E(X^2)- [E(X)]^2 = 6.4 -(2^2)= 2.4](https://tex.z-dn.net/?f=%20Var%28X0%20%3DE%28X%5E2%29-%20%5BE%28X%29%5D%5E2%20%3D%206.4%20-%282%5E2%29%3D%202.4)
And the deviation:

Step-by-step explanation:
We have the following distribution
x 0 1 2 3 4
P(x) 0.2 0.3 0.1 0.1 0.3
Part a
For this case:

Part b
We want this probability:

And replacing we got:
![P(X \geq 3) = 1- [0.2+0.3+0.1]= 0.4](https://tex.z-dn.net/?f=%20P%28X%20%5Cgeq%203%29%20%3D%201-%20%5B0.2%2B0.3%2B0.1%5D%3D%200.4)
Part c
For this case we want this probability:

Part d

Part e
We can find the mean with this formula:

And replacing we got:

Part f
We can find the second moment with this formula

And replacing we got:

And the variance would be:
![Var(X0 =E(X^2)- [E(X)]^2 = 6.4 -(2^2)= 2.4](https://tex.z-dn.net/?f=%20Var%28X0%20%3DE%28X%5E2%29-%20%5BE%28X%29%5D%5E2%20%3D%206.4%20-%282%5E2%29%3D%202.4)
And the deviation:

Answer:My answer is Temp-pH I
I don't know if it is right or not
Answer:
Discriminant = 20
Step-by-step explanation:
We use formula to find the discriminant.
Discriminant (D) = b^2 - 4ac
The given equation is x^2 - 6x + 4 = 0.
Here the value of a = 1, b = -6 and c = 4.
Plug in the given values in the formula, we get
Discriminant (D) = (-6)^2 - 4*1*4
= 36 - 16
Discriminant = 20
Thank you.
Answer:
X = 4
Step-by-step explanation:
you just gotta subtract 1 from both sides in order to find what x equals. and from there you subtract x from both sides, any letter has an invisible 1 in front, so then you divide 2 from both sides. and you get x = 4