Answer:
C(n) = 4 n for all possible integers n in N. This statement is true when n=1 and proving that the statement is true for n=k when given that statement is true for n= k-1
Step-by-step explanation:
Lets P (n) be the statement
C (n) = 4 n
if n =1
(x+4)n = (x+4)(1)=x+4
As we note that constant term is 4 C(n) = 4
4 n= 4 (1) =4
P(1) is true as C(n) = 4 n
when n=1
Let P (k-1)
C(k-1)=4(k-1)
we need to proof that p(k) is true
C(k) = C(k-1) +1)
=C(k-1)+C(1) x+4)n is linear
=4(k-1)+ C(1) P(k-1) is true
=4 k-4 +4 f(1)=4
=4 k
So p(k) is true
By the principle of mathematical induction, p(n) is true for all positive integers n
Answer:
A. 1 rectangle, 2 triangles
B. AB = AE = 5
C. 36.5 square units
Step-by-step explanation:
<h3>A.</h3>
The attached figure shows 1 rectangle (square) and two triangles.
__
<h3>B.</h3>
These sides are aligned with the grid, so their length is simply the difference in coordinates along the line:
AB = 2 -(-3) = 5
AE = 3 -(-2) = 5
__
<h3>C.</h3>
The area of the square is ...
A = s^2 = 5^2 = 25
The area of triangle BCF is ...
A = 1/2bh = 1/2(3)(5) = 15/2
The area of triangle CDE is ...
A = 1/2bh = 1/2(8)(1) = 4
The total area is the sum of the areas of the square and two triangles:
total area = 25 +7.5 +4 = 36.5 . . . square units
_____
<em>Additional comment</em>
We note that segment CE divides the figure into <em>trapezoid</em> ABCE and <em>triangle</em> CDE. The trapezoid has bases 5 and 8, and height 5, so its area is ...
A = 1/2(b1 +b2)h = 1/2(5 +8)(5) = 32.5
Triangle CDE has the same area as computed above, 4 square units. So, the total area of the figure is ...
32.5 +4 = 36. 5 . . . . square units
Answer:
x= 8
Step-by-step explanation:
60/48=1.25
15/1.25= 12
12-4=8