A)We know the formula of the angular speed is ω = 2π / TWhere T is the time period.When second hand completes one revolution then the time taken is 60s.So T = 60sThen the angular speed of the second hand is ω= 2π / (60s) = 0.1047 rad/sb)When the minute hand completes one revolution the time taken is T = 1 hr = 3600sThen the angular speed of the minute hand is ω =(2π) / (3600s) = 0.001745 rad/sc)When the hour hand completes one revolution then the timeperiod is T = 12hrs = (12)(3600)sThen the angular speed of the hour hand is ω =(2π) / [(12)(3600)s] = 1.45444 x 10^-4 rad/s
You should trust the primary source more.
This is because the primary source is make its conclusion from direct observation, while the secondary source is possibly making reference to another secondary source or to another primary.
The primary source should be trusted more because it is from direct observation.
Answer:
3.71 m/s
Explanation:
From the law of conservation of linear momentum, since we are neglecting minor energy losses due to friction then we can express it as
since all the potential energy is transformed to kinetic energy
Making v the subject of the formula then
and here m is the mass of the block, g is acceleration due to gravity, h is the height. Substituting 0.7 m for h and 9.81 for g then we obtain that