Answer:


Explanation:
Force of friction on M mass so that it will move down the inclined plane is given as

now if it is moving down the inclined plane at constant speed
so we will have

on other side the mass "m" will go up at constant speed
so we have

so we have

so we have

for special case when m = M
then we have

Answer:
A bicycle on the top of the hill has the highest potential energy, and when the bike goes down, it transfers to kinetic because it is moving
Explanation:
yeah
Answer:

Explanation:

1+7 = 6+2 =8 -protons
1+15 = 12+4 = 16 - protons +neutrons
Answer:
See the explanation below
Explanation:
The watt (the power) is equal to the relationship between the work and the time in which that work is performed.

where:
W = work [J] (units of Joules)
t = time [s].
Now 1000 [W] are equal to 1 [kW]
And 1000000 [W] are equal to 1 [MW]
The horsepower is the unit of power in the imperial system of units.
And 745.7 [W] are equal to 1 [Hp]
Answer:
The magnetic field will be
, '2d' being the distance the wires.
Explanation:
From Biot-Savart's law, the magnetic field (
) at a distance '
' due to a current carrying conductor carrying current '
' is given by

where '
' is an elemental length along the direction of the current flow through the conductor.
Using this law, the magnetic field due to straight current carrying conductor having current '
', at a distance '
' is given by

According to the figure if '
' be the current carried by the top wire, '
' be the current carried by the bottom wire and '
' be the distance between them, then the direction of the magnetic field at 'P', which is midway between them, will be perpendicular towards the plane of the screen, shown by the
symbol and that due to the bottom wire at 'P' will be perpendicular away from the plane of the screen, shown by
symbol.
Given
and 
Therefore, the magnetic field (
) at 'P' due to the top wire

and the magnetic field (
) at 'P' due to the bottom wire

Therefore taking the value of
the net magnetic field (
) at the midway between the wires will be
