Answer:
option E
Explanation:
The correct answer is option E
Writing the relation between wavelength and frequency

f is the frequency
v is the velocity of wave
λ is the wavelength
From the above expression we can clearly see that frequency is inversely proportional to wavelength.
When the distance between the two successive crest is decreased then wave length of the wave also decrease.
If wavelength of the wave decreases then frequency of the wave increase.
hence, we can say that both wavelength and the frequency changes.
Answer:
C) to produce white blood cells
Explanation:
Your liver does all of the others things except produce white blood cells
If it helps consider making brianliest (it helps alot)
It is absorbed, or can be reflected by clouds, gasses, dust. or is reflected off of Earths surface.
Answer:
The height of the water above the hole in the tank is 58 mm
Explanation:
In order to solve this problem we need to draw a sketch of the dimensions that include the input variables of the problem.
Where:
x = 0.579[m]
y = 1.45 [m]
Using the following kinematic equation we can find the time that takes the water to hit the ground, and then with this time, we can find the velocity of the water in the x-component.

It is necessary to clarify the value of each of the respective variables below
y = - 1.45 [m] "It is negative because this point is below the water outlet"
yo = 0
vo = 0 "The velocity is zero because the component of the speed on the Y-axis does not exist"
therefore:
![-1.45=0.5*(-9.81)*t^{2} \\t = \sqrt{\frac{1.45}{0.5*9.81} } \\t = 0.543[s]](https://tex.z-dn.net/?f=-1.45%3D0.5%2A%28-9.81%29%2At%5E%7B2%7D%20%5C%5Ct%20%3D%20%5Csqrt%7B%5Cfrac%7B1.45%7D%7B0.5%2A9.81%7D%20%7D%20%5C%5Ct%20%3D%200.543%5Bs%5D)
The next step is to determine the velocity in component x, knowing the time.
![v=\frac{x}{t} \\v=\frac{0.579}{.543} \\v = 1.06[m/s]](https://tex.z-dn.net/?f=v%3D%5Cfrac%7Bx%7D%7Bt%7D%20%5C%5Cv%3D%5Cfrac%7B0.579%7D%7B.543%7D%20%5C%5Cv%20%3D%201.06%5Bm%2Fs%5D)
Now using torricelli's law we can find the elevation.
![v=\sqrt{2*g*h} \\h=\frac{v^{2} }{2*g} \\h=\frac{1.06^{2} }{2*9.81} \\h= 0.057[m] = 57.95[mm]](https://tex.z-dn.net/?f=v%3D%5Csqrt%7B2%2Ag%2Ah%7D%20%5C%5Ch%3D%5Cfrac%7Bv%5E%7B2%7D%20%7D%7B2%2Ag%7D%20%5C%5Ch%3D%5Cfrac%7B1.06%5E%7B2%7D%20%7D%7B2%2A9.81%7D%20%5C%5Ch%3D%200.057%5Bm%5D%20%3D%2057.95%5Bmm%5D)
The acceleration of gravity on Mars is about 3.7 m/s². (b)
So anything located on the surface of Mars weighs about 38% of what it would weigh if it were on Earth.