1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BigorU [14]
3 years ago
5

In a race , Ram covers 5 km in 20 min. How much distance will he cover in 100 min

Mathematics
2 answers:
Mekhanik [1.2K]3 years ago
5 0
You can use proportion
Km Min
5 20
? 100

(5*100)/20
500/20
=25
masya89 [10]3 years ago
4 0

Answer:

25 km

Step-by-step explanation:

100/20=5

5*5=25

You might be interested in
Pls someone help me with this question pls
ycow [4]

Answer:

9/11

Step-by-step explanation:

9/11

5 0
3 years ago
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
8
STatiana [176]

Answer:

(e^3 / e^2n)

Step-by-step explanation:

isn't this the same question

5 0
3 years ago
heights of statistics students were obtained by a teacher as part of an experiment conducted for the class. The last digit of th
hammer [34]

Answer:

1) B. The height appear to be reported because there are disproportionately more 0s and 5s.

2) A. They are likely not very accurate because they appear to be reported.

Step-by-step explanation:

The distribution table is shown below:

Last Digit           Frequency

     0                          9

     1                           1

     2                          1

     3                          3

     4                          1

     5                         11

     6                          1

     7                          0

     8                          3

     9                          1

1. Based on the distribution table, we see a very disproportionate distribution. There is a high frequency of 0's and 5's. This lays credence to the heights being reported rather than measured. As such, option B is the correct answer

<u>B. The height appear to be reported because there are disproportionately more 0s and 5s</u>.

2. Since the heights were reported and not measured, they are most certainly not accurate. The conclusion is that the result is not accurate. As such, option A is the correct answer

<u>A. They are likely not very accurate because they appear to be reported</u>.

7 0
3 years ago
1. Find the value of x. *
oksano4ka [1.4K]
Forgive me if I’m wrong. 25?
4 0
3 years ago
Read 2 more answers
Other questions:
  • What is this answer
    15·1 answer
  • PLEASE HELP!! 15 POINTS
    13·1 answer
  • What would my percent be ? Please help :/
    12·2 answers
  • PLZ HELP I really need help with this.
    5·1 answer
  • Find the values of a,b, or c for y = x^2 - 9x +18 please help!!
    7·1 answer
  • Which two numbers have a mean of 10 and a range of 4?
    14·1 answer
  • Harish's soccer team is trying to raise $5,092 to travel to a tournament in Florida, so they decided to host a pancake breakfast
    8·1 answer
  • Write the Fractions as a sum of unit fractions 6/12
    7·2 answers
  • Help me on this please it’s due please help me
    9·2 answers
  • If (x2 – 4) ÷ (x 2) = x – 2, which polynomial should fill in the blank below? (x 2) ´ ______ = x2 – 4
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!