Answer:
EXPERIMENT: THE CABBAGE INDICATOR
Here are your goals for this lesson:
Use indicator for each substance to determine if substance is an acid or a base
Summarize results and the experimental method
You can use the natural indicator in red cabbage juice to determine which household liquids are acids or bases. If no change in the color of the cabbage juice takes place, the liquid is neither an acid nor base; it is neutral.
Acids and bases are opposites. When an acids and base are mixed, they neutralize each other. You can use an indicator to see the neutralized reaction. The cabbage juice will change color when the liquids are neutralized.
Online Lab
This video will demonstrate how an indicator, in this case, cabbage indicator, can be used to determine whether a solution is acidic or basic. As you watch the video, remember to record your data and observations to use to present your findings.
Compile a summary of your findings from this experiment. Include your hypothesis, observations, data, and conclusions. Be sure to answer the questions below as well as explaining the method and results.
r.
Explanation:
Answer:
<em>Well, Your best answer will be is 2H+ + 2OH- -> 2H2O but you have to reduce it to H+ + OH- -> H2O. </em><em>Good Luck!</em>
A balanced equation representing the acid-base reaction that allows the calculation of the moles of aspirin in a sample is
⇒ 
Aspirin, also known as acetylsalicylic acid, is a nonsteroidal anti-inflammatory drug used to reduce pain, fever, and/or inflammation, and as an antithrombotic.
Aspirin is a benzoic acid with an ortho-substituted acylated alcohol function (actually a phenol). Therefore, two reactions can occur when aspirin and NaOH are combined: In fact, several aspirin formulations contain this ingredient.
Hence, A balanced equation representing the acid-base reaction that allows the calculation of the moles of aspirin in a sample is
⇒ 
To know more about Aspirin, here : brainly.com/question/23878261
#SPJ4
<u>Answer:</u> The final temperature of water is 38.5°C
<u>Explanation:</u>
To calculate the amount of heat released or absorbed, we use the equation:

where,
q = heat absorbed = 1.506 kJ = 1506 J (Conversion factor: 1 kJ = 1000 J)
m = mass of water = 30 g
c = specific heat capacity of water = 4.184 Jl/g.°C
= change in temperature = 
Putting values in above equation, we get:

Hence, the final temperature of water is 38.5°C
Http://www.geologyin.com/2014/11/how-to-identify-minerals-in-10-steps.html