1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ozzi
2 years ago
7

At 25C the density of water is 0.997044 g/mL. Use this value to determine the percent error for the two density measurements

Chemistry
1 answer:
Gnom [1K]2 years ago
4 0

Given that:

  • At 25C the density of water is 0.997044 g/mL.

From the information attached below, we have the following parameters.

The density of water calculation using a bottle.

     Initial volume of    Final volume of    Mass of water   Density (g/mL)

     burette (mL)        burette   (mL)       dispensed (g)

 

Sample 1      2.33                     7.34                   5.000               -----

Sample 2      7.34                    12.37                 5.025                -----

Sample 3      12.37                   18.50                6.112                  -----

Sample 4      18.50                  24.57               6.064                 -----

Sample 5     24.57                  31.31                6.720                  -----

The first thing we need to do is to determine the change in the volume of the burette in each sample from the above information.

  • The change in the volume of the burette = (final volume - the initial volume) mL

Sample 1:

= (7.34 - 2.33) mL

= 5.01 mL

Sample 2:

= (12.37 - 7.34) mL

= 5.03 mL

Sample 3:

= (18.50 - 12.37) mL

= 6.03 mL

Sample 4:

= (24.57 - 18.50) mL

= 6.07 mL

Sample 5:

= (31.31 - 24.57) mL

= 6.74 mL

The mass of the water dispersed in sample 1 is given as = 5.000 g

Using the relation for calculating the density of each, we have:

Sample 1

\mathbf{density = \dfrac{mass}{volume}}

\mathbf{density = \dfrac{5.01 g}{5.000 ml}}

density = 0.998004 g/ml

Sample 2:

\mathbf{density = \dfrac{5.025 g}{5.03ml}}

density = 0.999006 g/ml

Sample 3:

\mathbf{density = \dfrac{6.112 g}{6.13ml}}

density = 0.997064 g/ml

Sample 4:

\mathbf{density = \dfrac{6.064 \ g}{6.07 \ ml}}

density = 0.999012 g/ml

Sample 5:

\mathbf{density = \dfrac{6.720 \ g}{6.74 \ ml}}

density = 0.997033 g/ml

Thus, the average density for all the samples is:

\mathbf{= \dfrac{( 0.998004 + 0.999006 + 0.997064 +   0.999012  + 0.997033  )}{5}}

= 0.998024

∴

The percentage error for the two densities measurement is:

=\dfrac{ (experimental \  value -theoretical  \ value)\times 100 }{theoretical  \ value}

Given that the theoretical value = 0.997044 g/ml

Then;

\mathbf{= \dfrac{(0.998024 - 0.997044)100}{0.997044}}

= 0.0983%

Therefore, we can conclude that the percent error for the two density measurements is 0.0983%

Learn more about density here:

brainly.com/question/24386693?referrer=searchResults

You might be interested in
Which mass of urea, CO(NH2)2, contains the same mass of nitrogen as 101.1g of potassium nitrate?
Effectus [21]
In order to calculate the mass of nitrogen, we must first calculate the mass percentage of nitrogen in potassium nitrate. This is:
% nitrogen = mass of nitrogen / mass of potassium nitrate
% nitrogen = 14 / 101.1 x 100

The mass of nitrogen = % nitrogen x sample mass
= (14 / 101.1) x 101.1
= 14 grams

The molar weight of nitrogen is 14. Each mole of urea contains two moles of nitrogen. Therefore, for there to be 14 grams of nitrogen, there must be 0.5 moles of urea.
Mass of urea = moles urea x molecular weight urea
Mass of urea = 0.5 x 66.06
Mass of urea = 33.03 grams
4 0
3 years ago
Match the correct definition with the correct term from questions 10-13: A. Internal energy B. Latent heat C. Chemical (bond) en
Marizza181 [45]

Answer:  A. Internal energy : May be viewed as the sum of the kinetic and potential energies of the molecules

B. Latent heat: The internal energy associated with the phase of a system.

C. Chemical (bond) energy : The internal energy associated with the atomic bonds in a molecule

D. Nuclear energy : The internal energy associated with the bonds within the nucleus of the atom itself

Explanation:

Internal energy is defined as the total energy of a closed system. Internal energy is the sum of potential energy of the system and the kinetic energy of the system. It is represented by symbol U.

Latent heat is the thermal energy released or absorbed by a thermodynamic system when the temperature of the system does not change. It is thus also called as hidden heat.

Chemical energy is the energy stored in the bonds of molecules.

Nuclear energy is the energy which is stored in the nucleus of an atom called as binding energy within protons and neutrons.

5 0
3 years ago
Please help I’m marking a branliest answer ☹️☹️☹️☹️☹️☹️
Doss [256]
The answer would be C
7 0
2 years ago
When you are done using the glassware from a kit, what should you do?
lakkis [162]

Answer:

A. Wipe down the glassware to remove any cleaning solvent.

Explanation:

· Remove stoppers and stopcocks when they are not in use. Otherwise, they may "freeze" in place. You can de-grease ground glass joints by wiping them with a lint-free towel soaked with ether or acetone. Wear gloves and avoid breathing the fumes. The deionized water rinse should form a smooth sheet when poured through clean glassware.

3 0
2 years ago
Is sugar made of tiny particles
netineya [11]
Sugar and water are made with tiny particles. They are both made from molecules and atoms.
6 0
3 years ago
Other questions:
  • Identify three physical properties of ionic compounds that are associated with ionic bonds
    12·1 answer
  • What’re the answers?
    7·1 answer
  • Choose the statement below that correctly describes electrons.
    8·1 answer
  • What kind of reaction is this ? P+02
    7·1 answer
  • What are the limitations of seed banks?
    15·1 answer
  • I am lonely I need anime weebs
    14·2 answers
  • Speed.
    15·1 answer
  • Please someone solve this and tell me how you solve it
    13·1 answer
  • What classifies a substance as an element?
    11·1 answer
  • A 400. 0 g sample of liquid water is at 30. 0 ºc. how many joules of energy are required to raise the temperature of the water t
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!