Use Green's Theorem to evaluate C F · dr. (Check the orientation of the curve before applying the theorem.) F(x, y) = x + 10y3,
10x2 + y C consists of the arc of the curve y = sin(x) from (0, 0) to (π, 0) and the line segment from (π, 0) to (0, 0)
1 answer:
Answer:

Step-by-step explanation:
Given that:

where;
and C consist of the arc of the curve, This shows that C is a closed curve.
Thus, using Green's theorem for clockwise orientation.

Then;




y → 0 to sin (x) x → 0 to π

![\int \limits _CF. dr = \int \limits ^{\pi}_{0} \Biggl [ -20xy + \dfrac{30 \ y^3}{3} \Biggl ] ^{sin\ x}_{0} \ dx](https://tex.z-dn.net/?f=%5Cint%20%5Climits%20_CF.%20dr%20%3D%20%5Cint%20%5Climits%20%5E%7B%5Cpi%7D_%7B0%7D%20%5CBiggl%20%5B%20-20xy%20%2B%20%5Cdfrac%7B30%20%5C%20y%5E3%7D%7B3%7D%20%5CBiggl%20%5D%20%5E%7Bsin%5C%20x%7D_%7B0%7D%20%5C%20dx)
![\int \limits _CF. dr = \int \limits ^{\pi}_{0} \Big [ -20x \ sin x + 10 \ sin^3x \Big ] \ dx](https://tex.z-dn.net/?f=%5Cint%20%5Climits%20_CF.%20dr%20%3D%20%5Cint%20%5Climits%20%5E%7B%5Cpi%7D_%7B0%7D%20%5CBig%20%5B%20-20x%20%5C%20sin%20x%20%2B%2010%20%5C%20sin%5E3x%20%5CBig%20%5D%20%20%5C%20dx)
replace 

By applying integration by posits

![= (-20x) (-cos x) - \int (-20)(-cos x) \ dx + 10 \Big [\dfrac{3}{4} \ cos x + \dfrac{1}{12}\ cos (3x) \Big ]](https://tex.z-dn.net/?f=%3D%20%28-20x%29%20%28-cos%20x%29%20-%20%5Cint%20%28-20%29%28-cos%20x%29%20%5C%20dx%20%2B%2010%20%5CBig%20%5B%5Cdfrac%7B3%7D%7B4%7D%20%5C%20cos%20x%20%2B%20%5Cdfrac%7B1%7D%7B12%7D%5C%20cos%20%283x%29%20%5CBig%20%5D)




You might be interested in
A + B + C = 180
x + 2x + 2 + 3x + 4 = 180
6x + 6 = 180
6x = 174
x = 29
The answer is option A
Here’s the process
Hope you understand it!
Answer:
minos anos
Step-by-step explanation:
242mg
Explanation:
You would create a ratio for this situation
3oz/22mg=33oz/x
So we know 3*11=33 so we would do 22*11 and get 242 mg
Answer:
9.85 - 1.15 = 8.70
Step-by-step explanation:
you jus subtract :)