The intersecting secant theorem states the relationship between the two intersecting secants of the same circle. The given problems can be solved using the intersecting secant theorem.
<h3>What is Intersecting Secant Theorem?</h3>
When two line secants of a circle intersect each other outside the circle, the circle divides the secants into two segments such that the product of the outside segment and the length of the secant are equal to the product of the outside segment other secant and its length.
a(a+b)=c(c+d)
1.)
6(x+6) = 5(5+x+3)
6x + 36 = 25 + 5x + 15
x = 4
2.)
4(2x+4)=5(5+x)
8x + 16 = 25 + 5x
3x = 9
x = 3
3.)
8x(6x+8x) = 7(9+7)
8x(14x) = 112
112x² = 112
x = 1
4.)
(x+3)² = 16(x-3)
x² + 9 + 6x = 16x - 48
x² - 10x - 57 = 0
x = 14.0554
Learn more about Secant:
brainly.com/question/10128640
#SPJ1
276 divides by 4 = 69
So 3x69 = 207 + 276 = $483
Answer:
the greatest common factor is 2x^2
Answer:
(-4, 3] U (3, 8]
Step-by-step explanation:
The first lines range is (-4,3]
(the round bracket is because the -4 not included ( clear circle) and the square on because the 3 is included in the range ( the filled circle))
second line - range is (3, 8]
So its (-4, 3] U (3, 8]