Graduated cylinder
Stopwatch
Thermometer
Answer:
hiiiiiiiiiiiiiiiiiiiiiiiiii
The third reason helped Rutherford to discover the nucleus.
Answer:
Explanation has been given below.
Explanation:
- Chloroform has three polar C-Cl bonds. Methylene chloride has two polar C-Cl bonds. So it is expected that chloroform should be more polar and posses higher dipole moment than methylene chloride.
- Two factors are liable for the opposite trend observed in dipole moments of methylene chloride and chloroform.
- First one is the number of hyperconjugative hydrogen atoms present in a molecule. Hyperconjugation occurs with vacant d-orbital of Cl atom. Hyperconjugation amplifies charge separation in a molecule resulting higher dipole moment.
- Methylene chloride has two hyperconjugative hydrogen atoms and chloroform has one hyperconjugative hydrogen atom.Therefore methylene chloride should have higher charge separation as compared to chloroform.
- Second one is induction of opposite polarity in a C-Cl bond by another C-Cl bond in a molecule. Higher the opposite induction of polarity, lower the charge separation in a molecule and hence lower the dipole moment of a molecule.
- Chloroform has three C-Cl bonds and methylene chloride has two C-Cl bonds. Therefore opposite induction is higher for chloroform resulting it's lower dipole moment.
<u>Answer:</u> The mass of solution having 768 mg of KCN is 426.66 grams.
<u>Explanation:</u>
We are given:
0.180 mass % of KCN solution.
0.180 %(m/m) KCN solution means that 0.180 grams of KCN is present in 100 gram of solution.
To calculate the mass of solution having 768 mg of KCN or 0.786 g of KCN (Conversion factor: 1 g = 1000 mg)
Using unitary method:
If 0.180 grams of KCN is present in 100 g of solution.
So, 0.768 grams of KCN will be present in =
of solution.
Hence, the mass of solution having 768 mg of KCN is 426.66 grams.