The composite material is composed of carbon fiber and epoxy resins. Now, density is an intensive unit. So, to approach this problem, let's assume there is 1 gram of composite material. Thus, mass carbon + mass epoxy = 1 g.
Volume of composite material = 1 g / 1.615 g/cm³ = 0.619 cm³
Volume of carbon fibers = x g / 1.74 g/cm³
Volume of epoxy resin = (1 - x) g / 1.21 g/cm³
a.) V of composite = V of carbon fibers + V of epoxy resin
0.619 = x/1.74 + (1-x)/1.21
Solve for x,
x = 0.824 g carbon fibers
1-x = 0.176 g epoxy resins
Vol % of carbon fibers = [(0.824/1.74) ÷ 0.619]*100 =<em> 76.5%</em>
b.) Weight % of epoxy = 0.176 g epoxy/1 g composite * 100 = <em>17.6%</em>
Weight % of carbon fibers = 0.824 g carbon/1 g composite * 100 = <em>82.4%</em>
Answer:
The molar mass and atomic mass are essentially the same for an element
Explanation:
The molar mass of a substance can be obtained by dividing the mass of the substance by the no of moles of the substance present.
The atomic mass of an element is the number of protons and neutrons present in the substance.
These two measurements usually give the same values because they both make reference to the 1/12th the mass of carbon-12 for their measurement.
Because they both have the same reference point, though they have different calculating procedures, the results obtained will be similar.
Explanation:
<h3>oxidation of Nitrogen in N2O3 is </h3><h2>+3</h2>
3Fe + 4H2O (yields) Fe3O4 + 4H2