CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the FlexBook®, CK-12 intends to pioneer the generation and distribution of high-quality educational content that will serve both as core text as well as provide an adaptive environment for learning, powered through the FlexBook Platform®.
Copyright © 2014 CK-12 Foundation, www.ck12.org
The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws.
Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms.
Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Com- mons from time to time (the “CC License”), which is incorporated herein by this reference.
Need more info...........
Answer:
3(238+12) is the expression
Step-by-step explanation:
hope this helps
To check if a piecewise defined function is continuous, you need to check how the pieces "glue" together when you step from one domain to the other.
So, the question is: what happens at x=3? If you reach x=3 from values slightly smaller than 3, you obey the rule f(x)=log(3x). So, as you approach 3, you get values closer and closer to

Similarly, if you reach x=3 from values slightly greater than 3, you obey the rule f(x)=(4-x)log(9). So, as you approach 3, you get values closer and closer to

So, the function is continuous at x=3, because both pieces approach log(9) as x approaches 3.
Answer:
In Quadratic Factorization using Splitting of Middle Term which is x term is the sum of two factors and product equal to last term. To Factor the form :ax 2 + bx + c. Factor : 6x 2 + 19x + 10. 1) Find the product of 1st and last term( a x c).
Step-by-step explanation:
I hope that helped you!! sorry if not!!