Answer:
y= 2x -3
Step-by-step explanation:
Let's rewrite the given equation into the form of y=mx+c, so that we can find the gradient of the line. In this form, m (coefficient of x) is the gradient.
4x -2y= 3
2y= 4x -3
<em>Divide</em><em> </em><em>by</em><em> </em><em>2</em><em> </em><em>throughout</em><em>:</em>

Thus the gradient is 2.
Parallel lines have the same gradient thus the line would also have a gradient of 2.
Substitute m=2 into the equation:
y= 2x +c
To find the value of c, substitute a pair of coordinates.
When x=2, y=1,
1= 2(2) +c
1= 4 +c
c= 1 -4
c= -3
Thus, the equation of the line is y= 2x -3.
Answer as a fraction: 17/6
Answer in decimal form: 2.8333 (approximate)
==================================================
Work Shown:
Let's use the two black points to determine the equation of the red f(x) line.
Use the slope formula to get...
m = slope
m = (y2-y1)/(x2-x1)
m = (4-0.5)/(2-(-1))
m = (4-0.5)/(2+1)
m = 3.5/3
m = 35/30
m = (5*7)/(5*6)
m = 7/6
Now use the point slope form
y - y1 = m(x - x1)
y - 0.5 = (7/6)(x - (-1))
y - 0.5 = (7/6)(x + 1)
y - 0.5 = (7/6)x + 7/6
y = (7/6)x + 7/6 + 0.5
y = (7/6)x + 7/6 + 1/2
y = (7/6)x + 7/6 + 3/6
y = (7/6)x + 10/6
y = (7/6)x + 5/3
So,
f(x) = (7/6)x + 5/3
We'll use this later.
---------------------
We ultimately want to compute f(g(0))
Let's find g(0) first.
g(0) = 1 since the point (0,1) is on the g(x) graph
We then go from f(g(0)) to f(1). We replace g(0) with 1 since they are the same value.
We now use the f(x) function we computed earlier
f(x) = (7/6)x + 5/3
f(1) = (7/6)(1) + 5/3
f(1) = 7/6 + 5/3
f(1) = 7/6 + 10/6
f(1) = 17/6
f(1) = 2.8333 (approximate)
This ultimately means,
f(g(0)) = 17/6 as a fraction
f(g(0)) = 2.8333 as a decimal approximation
99$ Because you are broke and can’t afford the real amount of taxes and want to save the rest of your money for the strip club
Answer:
3x+ 5 = 6
. Correct.
Step-by-step explanation:
Let x = the number.
The number tripled: 3x
Tripled and increased by : 3x + 5
Equals 6: 3x+ 5 = 6
Correct.