Answer:
f.The period is independent of the suspended mass.
Explanation:
The period of a pendulum is given by

where
L is the length of the pendulum
g is the acceleration due to gravity
From the formula, we see that:
1) the period of the pendulum depends only on its length, L, and it is proportional to the square root of the length
2) the period does not depend neither on the mass of the pendulum, nor on its amplitude of oscillation
So, the only correct statements are
f.The period is independent of the suspended mass.
Note: statement "e.The period is proportional to the length of the wire" is also wrong, because the period is NOT proportional to the length of the wire, but it is proportional to the square root of it.
Answer:
I THINK it’s A
Explanation:
Because all the other answers don’t make sense.
Answer: they have the same magnitude.
Explanation:
normal force = mg
weight = mg
First, we would need to know the decaying isotope.
Next, we use the decay formula
A = Ao e^(-kt)
After determining the remaining amount after two hours, the decay reaction can be used to determine the number of gamma rays released. If the given is in terms of mole, then the total energy is
E = 140n KeV where n is the number of moles of gamma rays released