Answer:
46.4 s
Explanation:
5 minutes = 60 * 5 = 300 seconds
Let g = 9.8 m/s2. And be the slope of the road, s be the distance of the road, a be the acceleration generated by Rob, 3a/4 is the acceleration generated by Jim . Both of their motions are subjected to parallel component of the gravitational acceleration
Rob equation of motion can be modeled as s = a_Rt_R^2/2 = a300^2/2 = 45000a[/tex]
Jim equation of motion is
As both of them cover the same distance
So Jim should start 346.4 – 300 = 46.4 seconds earlier than Rob in other to reach the end at the same time
Answer:
the correct one is C
Explanation:
For this exercise we must use the work definition
W = F. s
Where the bold characters indicate vectors and the point is the scalar producer
W = F s cos θ
Where θ is the angles between force and displacement.
Let us support this in our case. The cable creates an upward tension and with the elevator going down the angle between them is 180º so the work of the cable on the elevator is negative.
The evade has a downward force, its weight so the force goes down and the displacement goes down, as both are in the same direction the work is positive
When examining the statements the correct one is C
Answer:
Average Velocity = 3.65 m/s
Explanation:
Average Velocity
Cleavage<span> is the tendency of a </span>mineral<span> to break along smooth planes parallel to zones of weak bonding. Fracture is the tendency of a </span>mineral<span> to break along curved surfaces without a definite shape. These </span>minerals<span> do not have planes of weakness and break irregularly.</span>
Answer:
Given: a projectile of initial launch velocity(V) and launch angle ∅ and no air resistance. At the maximum height, the projectile would have a zero contribution of speed from the vertical component(Vy) Therefore, if we say Vx=Vcos∅ is the only speed the projectile has at the instant of maximum height then we can replace Vx with 1/5V and write 1/5V=Vcos∅. Solving for the the launch angle ∅, gives Inverse Cos(1/5)=78.5 degrees.