They are about 4.5 billion years old. Hope this helps.
Answer:
10.9%.
Explanation:
The first thing to do in order to solve this question is to Determine the value for the volume of the the cube. This can be done by taking the cube root of the length of the cube;
The volume of the cube = (length of the cube)^3 = length × length × length = 1.72 × 1.72 × 1.72 =( 1.72)^3 = 5.09cm^3.
The next thing you do is to Determine the exponential density, the can be done by using the formula below;
The exponential density = mass/ volume = 55. 786/ 5.09 = 10.96 g/cm^3.
Therefore, the percent error = (true density of the cube - exponential density of the cube)÷ true density of the cube × 100.
Hence, the percent error = 12.30 - 10.96/12.30 × 100 = 10.9%.
Answer:
Gases are easily compressed. We can see evidence of this in Table 1 in Thermal Expansion of Solids and Liquids, where you will note that gases have the largest coefficients of volume expansion. The large coefficients mean that gases expand and contract very rapidly with temperature changes. In addition, you will note that most gases expand at the same rate, or have the same β. This raises the question as to why gases should all act in nearly the same way, when liquids and solids have widely varying expansion rates.
The answer lies in the large separation of atoms and molecules in gases, compared to their sizes, as illustrated in Figure 2. Because atoms and molecules have large separations, forces between them can be ignored, except when they collide with each other during collisions. The motion of atoms and molecules (at temperatures well above the boiling temperature) is fast, such that the gas occupies all of the accessible volume and the expansion of gases is rapid. In contrast, in liquids and solids, atoms and molecules are closer together and are quite sensitive to the forces between them.
Answer: sharing
Reason: They do this to gain stability. The reason they don’t actually transfer is because the difference in electronegativity values are above a certain value.