Answer:
2x + y - 6 = 0
OR 2x + y = 6
Step-by-step explanation:
First write the equation given in the problem:
y = -2x + 6 This is in slope-intercept form (y = mx + b).
Standard form is written Ax + By + C = 0. When C is a negative number, you might also see it as Ax + By = -C.
The main difference between the two forms in that slope-intercept form isolates the 'y' whereas standard form equates to 0. Don't confuse the 'b' in standard from with the 'B' in slope-intercept form.
To convert from slope-intercept form to standard form, <u>move everything over to the side with 'y'</u>. When you move something, you do its reverse operation to the whole equation. (The reverse of addition is subtraction, the reverse of multiplication is division.)
y = -2x + 6 Do the reverse operations for -2x and +6
y + 2x - 6 = -2x + 2x + 6 - 6 Add 2x and subtract 6 on both sides
y + 2x - 6 = 0 Right side cancels out to be '0'.
2x + y - 6 = 0 Rewrite with the 'x' in front of the 'y'
Here you can see the new equation and what each variable in Ax + By + C = 0 is.
A = 2
B = 1 When a number is not written with the variable, it is 1.
C = -6
Some teachers ask it to be rewritten as Ax + By = -C when 'C' is a negative number.
2x + y = 6
Answer:
- A rational function is any function which can be written as the ratio of two polynomial functions, where the polynomial in the denominator is not equal to zero. The domain of f(x)=P(x)Q(x) f ( x ) = P ( x ) Q ( x ) is the set of all points x for which the denominator Q(x) is not zero
- To determine the x-intercept, we set y equal to zero and solve for x. Similarly, to determine the y-intercept, we set x equal to zero and solve for y
- The y-intercept is the point at which the graph crosses the y-axis. At this point, the x-coordinate is zero. To determine the x-intercept, we set y equal to zero and solve for x. Similarly, to determine the y-intercept, we set x equal to zero and solve for y.
- In mathematics, a zero of a real-, complex-, or generally vector-valued function f, is a member x of the domain of f such that f(x) vanishes at x; that is, the function f attains the value of 0 at x, or equivalently, x is the solution to the equation f(x) = 0.
refer this attachment for 1st question ( given the rational function f(x)=2x+6/x-3, Answer the following questions. )
B.
He has used the highest recommended percentages to calculate the amounts for the three categories.
Answer:
S and U are centres of the respective circles.
a. Three radii of Circle S : SU , SR , ST
(Lines from the centre of the circle to its circumference)
b.Three radii of Circle U : US , UR , UT
(Lines from the centre of the circle to its circumference)
c.The radii of the two circles are equal to each other as they are congruent to each other.
Answer:1/3
Step-by-step explanation:
gradient equals

=
=
=