The horizontal force is m*v²/Lh, where m is the total mass. The vertical force is the total weight (233 + 840)N.
<span>Fx = [(233 + 840)/g]*v²/7.5 </span>
<span>v = 32.3*2*π*7.5/60 m/s = 25.37 m/s </span>
<span>The horizontal component of force from the cables is Th + Ti*sin40º and the vertical component of force from the cable is Ta*cos40º </span>
<span>Thh horizontal and vertical forces must balance each other. First the vertical components: </span>
<span>233 + 840 = Ti*cos40º </span>
<span>solve for Ti. (This is the answer to the part b) </span>
<span>Horizontally </span>
<span>[(233 + 840)/g]*v²/7.5 = Th + Ti*sin40º </span>
<span>Solve for Th </span>
<span>Th = [(233 + 840)/g]*v²/7.5 - Ti*sin40º </span>
<span>using v and Ti computed above.</span>
Answer:
I feel it would be D. 120.00 I'm really not sure
Explanation:
Given the Hubble's constant, the approximate age of the universe is 5.88 × 10⁹ Years.
Given the data in the question;
Hubble's constant; 
Age of the universe; 
We know that, the reciprocal of the Hubble's constant (
) gives an estimate of the age of the universe (
). It is expressed as:

Now,
Hubble's constant; 
We know that;

so
![1\ Million\ light\ years = [9.46 * 10^{15}m] * 10^6 = 9.46 * 10^{21}m](https://tex.z-dn.net/?f=1%5C%20Million%5C%20light%5C%20years%20%3D%20%5B9.46%20%2A%2010%5E%7B15%7Dm%5D%20%2A%2010%5E6%20%3D%209.46%20%2A%2010%5E%7B21%7Dm)
Therefore;

Now, we input this Hubble's constant value into our equation;

Therefore, given the Hubble's constant, the approximate age of the universe is 5.88 × 10⁹ Years.
Learn more: brainly.com/question/14019680
6 is between 3 and 4 or 3.5 7 is 7.5 and 8 is buggy 1 will win and buggy 1 will have to wait 31.5