D would be the answer because The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.
A star is located 5.9 light years from Earth.
We know that : 1 light year = 9.46 trillion kilometers.
We will calculate the distance in trillion kilometers multiplying the number of light years by 9.46:
5.9 * 9.46 = 55.814
Answer: The distance is 55.814 trillion km.
Answer:
9.8m/s²
Explanation:
The acceleration of the ball thrown after leaving my hand is 9.8m/s². This will be the acceleration due to gravity on the body.
- Acceleration due to gravity is caused by the pull of the earth on a massive object.
- The value of this acceleration is 9.8m/s².
- As the ball nears the surface, it comes near zero.
The linear velocity of a rotating object is the product of the angular velocity and the radius of the circular motion. Angular velocity is the rate of the change of angular displacement of a body that is in a circular motion. It is a vector quantity so it consists of a magnitude and direction. From the problem, the angular velocity is 5.9 rad per second and the radius is given as 12 centimeters. We calculate as follows:
Linear velocity = angular velocity (radius)
Linear velocity = 5.9 (12 ) = 70.8 cm / s
The linear velocity of the body in motion is 70.8 centimeters per second or 0.708 meters per second.