The function (fg)(x) is a composite function
The value of the function (fg)(x) is 2x^3 + 7x^2 - 19x - 20
<h3>How to determine the function (fg)(x)?</h3>
The functions are given as:
f(x) = 2x^2 - 3x - 4 and g(x) = x + 5.
To calculate (fg)(x), we make use of
(fg)(x) = f(x) * g(x)
So, we have:
(fg)(x) = (2x^2 - 3x - 4) * (x + 5)
Expand
(fg)(x) = 2x^3 - 3x^2 - 4x + 10x^2 - 15x - 20
Collect like terms
(fg)(x) = 2x^3 - 3x^2 + 10x^2 - 4x - 15x - 20
Evaluate
(fg)(x) = 2x^3 + 7x^2 - 19x - 20
Hence, the function (fg)(x) is 2x^3 + 7x^2 - 19x - 20
Read more about composite function at:
brainly.com/question/10687170
I believe the answer is the first one because it’s congruent
Unit rates are easy you just take the first number and divide it by your second
15 divided by 5 is = 3
75 divided by 25 is = 3
80 divided by 4 is = 20
Please mark brainiest
Have a amazing day
76 divided by 4 is 19. Add a zero and the answer is 190.
Hope this helps you !!
Answer:
a dog
Step-by-step explanation: