Answer:
x = 7000
y = 5600
(7000, 5600)
Step-by-step explanation:
To solve the system of equations means to find the point of intersection (graphically). You are finding what value of 'x' and what value of 'y' fits both equations.
x = y + 1400
0.08x + 0.05y = 840
We can solve using the method <u>substitution</u>, where you replace a variable in one equation with an equivalent expression.
<u>Since "x" is y + 1400, we can replace "x" in the second equation.</u>
0.08x + 0.05y = 840
0.08(y + 1400) + 0.05y = 840
Distribute over brackets by multiplying 0.08 with y, then 0.08 with 1400.
0.08y + 112 + 0.05y = 840 Collect like terms (with "y" variable)
112 + 0.13y = 840
Now isolate "y" in the simplified equation.
112 - 112 + 0.13y = 840 - 112 Subtract 112 from both sides
0.13y = 728
0.13y/0.13 = 728/0.13 Divide both sides by 0.13
y = 5600 Solved for y
We can substitute "y" with 5600 in any other equation that has "x".
x = y + 1400
x = 5600 + 1400 Add
x = 7000 Solved for x
You may express the answer as a coordinate, or an ordered pair (x, y).
The solution is (7000, 5600).
Answer:
-20° F
Step-by-step explanation:
the temperature would be :
=》-14 - 6 = -20° F
A. What three numbers could possibly be on his uniform.
B. Probability of being a multiple of 10 and is two digits and has a 3 as a factor.
C. Frank has a 30 on his uniform. The number is a multiple of 10 and one factor of the number is 3.
Answer:
(a)0.16
(b)0.588
(c)![[s_1$ s_2]=[0.75,$ 0.25]](https://tex.z-dn.net/?f=%5Bs_1%24%20s_2%5D%3D%5B0.75%2C%24%20%200.25%5D)
Step-by-step explanation:
The matrix below shows the transition probabilities of the state of the system.

(a)To determine the probability of the system being down or running after any k hours, we determine the kth state matrix
.
(a)


If the system is initially running, the probability of the system being down in the next hour of operation is the 
The probability of the system being down in the next hour of operation = 0.16
(b)After two(periods) hours, the transition matrix is:

Therefore, the probability that a system initially in the down-state is running
is 0.588.
(c)The steady-state probability of a Markov Chain is a matrix S such that SP=S.
Since we have two states, ![S=[s_1$ s_2]](https://tex.z-dn.net/?f=S%3D%5Bs_1%24%20%20s_2%5D)
![[s_1$ s_2]\left(\begin{array}{ccc}0.90&0.10\\0.30&0.70\end{array}\right)=[s_1$ s_2]](https://tex.z-dn.net/?f=%5Bs_1%24%20%20s_2%5D%5Cleft%28%5Cbegin%7Barray%7D%7Bccc%7D0.90%260.10%5C%5C0.30%260.70%5Cend%7Barray%7D%5Cright%29%3D%5Bs_1%24%20%20s_2%5D)
Using a calculator to raise matrix P to large numbers, we find that the value of
approaches [0.75 0.25]:
Furthermore,
![[0.75$ 0.25]\left(\begin{array}{ccc}0.90&0.10\\0.30&0.70\end{array}\right)=[0.75$ 0.25]](https://tex.z-dn.net/?f=%5B0.75%24%20%200.25%5D%5Cleft%28%5Cbegin%7Barray%7D%7Bccc%7D0.90%260.10%5C%5C0.30%260.70%5Cend%7Barray%7D%5Cright%29%3D%5B0.75%24%20%200.25%5D)
The steady-state probabilities of the system being in the running state and in the down-state is therefore:
![[s_1$ s_2]=[0.75$ 0.25]](https://tex.z-dn.net/?f=%5Bs_1%24%20s_2%5D%3D%5B0.75%24%20%200.25%5D)