I think it’s A. Mining and logging are huge factors
Answer: both hoops have the same kinetic energy at the bottom of the incline.
Explanation:
If we assume no work done by non conservative forces (like friction) , the total mechanical energy must be conserved.
K1 + U1 = K2 + U2
If both hoops start from rest, and we choose the bottom of the incline to be the the zero reference level for gravitational potential energy, then
K1 = 0 and U2 = 0
⇒ ΔK = ΔU = m g. h
If both inclines have the same height, and both hoops have the same mass m, the change in kinetic energy, must be the same for both hoops.
Answer:
Magnetic field at point having a distance of 2 cm from wire is 6.99 x 10⁻⁶ T
Explanation:
Magnetic field due to finite straight wire at a point perpendicular to the wire is given by the relation :
......(1)
Here I is current in the wire, L is the length of the wire, R is the distance of the point from the wire and μ₀ is vacuum permeability constant.
In this problem,
Current, I = 0.7 A
Length of wire, L = 0.62 m
Distance of point from wire, R = 2 cm = 2 x 10⁻² m = 0.02 m
Vacuum permeability, μ₀ = 4π x 10⁻⁷ H/m
Substitute these values in equation (1).
B = 6.99 x 10⁻⁶ T
Explanation:
energy conservation and fatigue management -tiredness is a common symptom of a heart attack and although rest is important activity is also required to facilitate a return to health. an occupational therapist said energy conservation and fatigue management is techniques to be implemented throughout the day. to help clients achieve their goals
Consider a car<span> that travels between points A and B. The </span>car's<span> average </span>speed<span> can be ..... the </span>car<span> to </span>slow down<span> with a </span>constant acceleration<span> of </span>magnitude 3.50 m/s2<span>. </span>If<span> the </span>car comes<span> to a </span>stop<span> in a </span>distance<span> of</span>30.0 m<span>, what was the </span>car's original speed<span>? ... A </span>car<span> is </span>traveling<span> at 26.0 </span>m<span>/s when the </span>driver suddenly applies<span> the </span>brakes<span>, ...</span>