Answer:
N = 337.96 N
Explanation:
∅ = 32º
F = 249 N
m = 21 Kg
N = ?
We can apply:
∑ F = 0 (↑)
- Fy - W + N = 0 ⇒ N = Fy + W
⇒ F*Sin ∅ + m*g = N
⇒ N = (249 N*Sin32º) + (21 Kg*9.81 m/s²)
⇒ N = 337.96 N (↑)
Answer:
0 m/s²
Explanation:
The velocity is constant, so there is no acceleration.
Power is the amount of energy consumed per unit time. Having no direction, it is a scalar quantity. <span>As is implied by the equation for </span>power<span>, a unit of </span>power <span>is equivalent to a unit of work divided by a unit of time. The formula would be as follows:
P = W/t
We calculate as follows:
500 W = 15000 J / t
t = 30 s</span>
Seeds can blow off plants in the wind and pollinate through air travel
Answer:
A 60 kg person standing on a platform at the surface of Saturn and they jumped, they would have to push with a force greater than 540 N
Explanation:
The gravitational attraction between an object on the surface of a planet and the planet is given by the weight of the object
Therefore the force needed to be applied for an object to lift off the surface of a planet = The weight of the object
The weight of the object on the surface of a planet = m × g
Where;
m = The mass of the object
g = The strength of gravity on the planet's surface in N/kg
The given parameters are;
The mass of the person standing on a platform at the surface of Saturn, m = 60 kg
The strength of gravity on the surface of Saturn = 9 N/kg
Therefore, we have;
The weight of the person = The force greater than which the person would have to push on the surface of Saturn so as to Jump = The weight of the person on the surface of Saturn = 60 kg × 9 N/kg = 540 N
Therefore, for a 60 kg person standing on a platform at the surface of Saturn and they jumped, they would have to push with a force greater than 540 N.