the answer to your question is
volume
The solid form of a substance is usually more dense than its
liquid and gaseous forms. Similarly the liquid form is usually more dense than
the gaseous form. Ice floating in water is an exception that breaks the general
density rule. So option “A” is the correct option in regards to the given
question. In case of ice formation, actually the density of water decreases by
about 9%. This is the main reason behind ice floating in water. Pure water has
the maximum density at 4 degree centigrade.
Answer;
=259 ml
Explanation;
-According to Gay Lussac's Law of Combining Volumes when gases react, they do so in volumes which have a simple ratio to one another, and to the volume of the product formed if gaseous, provided the temperature and pressure remain constant.
-Thus; from the volume of nitrogen and oxygen gases; we have; 316 / 178 = 1.775 moles of nitrogen gas per mole of oxygen gas.
-Therefore, nitrogen gas is the limiting reactant, and for each mole of nitrogen gas used, we will get 1 mole of N2O. This means the resulting volume of N2O with 100% yield will be the same as the volume of nitrogen gas used, thus, 100% yield will produce 316 mL.
However, with 82% yield the volume would be; 316 × 82/100 =259 ml
Therefore; the volume of N2O at 82% yield will be 259 ml
Answer:
energy required=qnet=87.75kJ
Explanation:
we will do it in three seperate step and then add up those value.
first step is to heat the sample of water upto 100C i.e upto boiling pont. because just after this sample of water started vaporization.
q 1= m c (T2-T1)
q1 = 36.0 g (4.18 J/gC) (100 - 65 C)
q1 = 5267 J
=5.267kJ
next is to vaporize the sample at 100C
q2 = 36.0 g / 18.0 g/mol X 40.7 kJ/mol
q2= 81.4 kJ
Finally, heat the steam upto 115C
q3 = m c (T2-T1)
q 3= 36.0 g (2.01 J/gC)(115-100C)
q3 = 1085 J
=1.085kJ
qnet=q1 +q2 +q3
energy required=qnet=87.75kJ
Answer:
i believe it's C
Explanation:
the result of multiplying (2.5 * 1010) and (3.5 x 10-7) is 8.8.10^3