Answer:
Updrafts characterize a storm's early development, during which warm air rises to the level where condensation begins and precipitation starts to develop. In a mature storm, updrafts are present alongside downdrafts caused by cooling and by falling precipitation.
Hope it helps
Have a great Day : P
Answer:
Decomposers (either Secondary Consumer or Tertiary Consumer)
Explanation:
Decomposers eat dead materials and break them down into chemical parts. ... They keep the ecosystem free of the bodies of dead animals or carrion. They break down the organic material and recycle it into the ecosystem as nutrients. Vultures, Blowflies, hyenas, crabs, lobsters and eels are examples of scavengers.
Answer: It's D
Explanation:
I just did this question and i picked C but it's actually D
Explanation:
The given data is as follows.
Pressure (P) = 760 torr = 1 atm
Volume (V) =
= 0.720 L
Temperature (T) =
= (25 + 273) K = 298 K
Using ideal gas equation, we will calculate the number of moles as follows.
PV = nRT
Total atoms present (n) =
=
= 0.0294 mol
Let us assume that there are x mol of Ar and y mol of Xe.
Hence, total number of moles will be as follows.
x + y = 0.0294
Also, 40x + 131y = 2.966
x = 0.0097 mol
y = (0.0294 - 0.0097)
= 0.0197 mol
Therefore, mole fraction will be calculated as follows.
Mol fraction of Xe =
= 
= 0.67
Therefore, the mole fraction of Xe is 0.67.
Answer:
They are strong intermolecular forces
Explanation:
Covalent forces are very strong intermolecular forces. In fact, we can say they are the strongest. This is because several big and giant molecules have covalent bonds holding their molecules together. A good example of this is the buckministerfullerence molecule which contains carbon atom to the order of 60 carbon atoms. It is a very giant molecule and it is covalent bond that is holding the molecules together
The strongest substance in the world is diamond. It is so strong that no other substance can cut it asides another diamond. As strong as it is, the molecule is held together by very strong intermolecular forces of covalent bonds which confers the strength it has on it