Answer:
Current, I = 0.153 A
Explanation:
Given that,
Radius of the circular conducting loop, r = 0.5 m
Resistance of the resistor, 
Magnetic field, B = 1 T
Angle with z axis, 
Magnetic field increases to 10 T in 4 seconds
To find,
Magnitude of current.
Solve,
According to Faraday's law, the induced emf is given by:

are final flux and the initial flux respectively.



The magnitude of current can be calculated using the Ohm's law as :


I = 0.153 A
Therefore, the magnitude of the current that will be caused to flow in the loop is 0.153 A.
When the sun's rays strike Earth's surface near the equator, the incoming solar radiation is more direct (nearly perpendicular or closer to a 90˚ angle). Therefore, the solar radiation is concentrated over a smaller surface area, causing warmer temperatures.
Answer:
The answer is "Option C".
Explanation:
It's evident from the figure below that after thirty minutes, not no more hydrogen can be created because all of the reactants have converted into products.
hydrogen gas created in cm cubes per period x = 20 seconds, y = 45 centimeters squared, and so on.
A reaction's terminus (the graph's flat line) indicates that no further products are being created during the reaction.
Answer:
(i) 
(ii) 
Explanation:
Let t be the average thickness of the sheet.
Given that:
Density of the aluminum sheet is 
Mass of sheet = 60.7 g
Length of sheet = 50.0 cm
Width of sheet = 30.0 cm
(i) Using, Density=Mass/Volume


Hence, the volume of the sheet is
.
(ii) Now, as this aluminum sheet is in the shape of a cuboid, so the volume of the sheet is



Hence, the average thickness of the sheet is
.
Answer:
The magnitude of force per unit length of one wire on the other is
and the direction is away from one another
The magnitude of force per unit length of one wire on the other is
and the direction is towards each other.
Explanation:
= Vacuum permeability = 
= Current in first wire = 2.9 A
= Current in second wire = 5.3 A
r = Gap between the wires = 11 cm
Force per unit length

The magnitude of force per unit length of one wire on the other is
and the direction is away from one another

The magnitude of force per unit length of one wire on the other is
and the direction is towards each other.