<span>The current is 6 miles per hour.
Let's create a few equations:
Traveling with the current:
(18 + c)*t = 16
Traveling against the current:
(18 - c)*t = 8
Let's multiply the 2nd equation by 2
(18 - c)*t*2 = 16
Now subtract the 1st equation from the equation we just doubled.
(18 - c)*t*2 = 16
(18 + c)*t = 16
(18 - c)*t*2 - (18 + c)*t = 0
Divide both sides by t
(18 - c)*2 - (18 + c) = 0
Now solve for c
(18 - c)*2 - (18 + c) = 0
36 - 2c - 18 - c = 0
36 - 2c - 18 - c = 0
18 - 3c = 0
18 = 3c
6 = c
So the current is 6 mph.
Let's verify that.
(18 + 6)*t = 16
24*t = 16
t = 16/24 = 2/3
(18 - 6)*t = 8
12*t = 8
t = 8/12 = 2/3
And it's verified.</span>
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
Below is the solution:
9.43 m/s
<span>F = -kx </span>
<span>k = 400 N/m </span>
<span>PE= 0.5kx^2 = 0.5mv^2 </span>
<span>solve, v=9.43 m/s</span>
Answer:
<h2>C. <u>
0.55 m/s towards the right</u></h2>
Explanation:
Using the conservation of law of momentum which states that the sum of momentum of bodies before collision is equal to the sum of the bodies after collision.
Momentum = Mass (M) * Velocity(V)
BEFORE COLLISION
Momentum of 0.25kg body moving at 1.0m/s = 0.25*1 = 0.25kgm/s
Momentum of 0.15kg body moving at 0.0m/s(body at rest) = 0kgm/s
AFTER COLLISION
Momentum of 0.25kg body moving at x m/s = 0.25* x= 0.25x kgm/s
<u>x is the final velocity of the 0.25kg ball</u>
Momentum of 0.15kg body moving at 0.75m/s(body at rest) =
0.15 * 0.75kgm/s = 0.1125 kgm/s
Using the law of conservation of momentum;
0.25+0 = 0.25x + 0.1125
0.25x = 0.25-0.1125
0.25x = 0.1375
x = 0.1375/0.25
x = 0.55m/s
Since the 0.15 kg ball moves off to the right after collision, the 0.25 kg ball will move at <u>0.55 m/s towards the right</u>
<u></u>
Answer:
the instrument that gives this precision is the micrometer screw
Explanation:
The high precision measurements of small parts are the general vernier and the micrometer screw.
In these two instruments the same principle is used: there is a fixed rule and a mobile one that increases precision.
Let's analyze the absolute error or precision of each instrument
* For the vernier, the precision of the fixed rule is 1 mm and there are 20 divisions (the most common); therefore the precision of the instrument is
Δx = 1 mm / 20
Δx = 0.05 mm
* For the micrometer screw, the precision of the fida rule is 0.5 mm and the number of divisions is 50, therefore the precision of the screw is
Δx = 0.5mm / 50
Δx = 0.01 mm
consequently the instrument that gives this precision is the micrometer screw