Hey there !
Given the reaction:
N2 + 3 H2 = 2 NH3
At constant pressure and temperature ,volume is proporcional to moles:
Theoretical moles of N2 and H2 => 1:3
Theoretical volume of N2 and H2 => 1:3
Experimental volume of N2 and H2 => 3.0 L : 4.0 L
0.75 : 1 = 2.25 : 3
Since N2 is in excess reactant , H2 is the limiting reactant
Therefore:
volume of NH3 is 2/3 * Volume of H2
= 2/3 * 4.0 = 2.66 L
Hope that helps!
Heat flows from hot to cold on its own spontaneity. Temperature is used to measure how hot or cold an object is in relation to its reference point.
Answer:
1. The gas law used: Dalton's law of partial pressure.
2. Pressure of nitrogen = 331 mmHg
Explanation:
From the question given above, the following data were obtained:
Total pressure (Pₜ) = 592 mmHg
Pressure of Oxygen (Pₒ) = 261 mmHg
Pressure of nitrogen (Pₙ) =?
The pressure of nitrogen in the sample can be obtained by using the Dalton's law of partial pressure. This is illustrated below:
Pₜ = Pₒ + Pₙ
592 = 261 + Pₙ
Collect like terms
592 – 261 = Pₙ
331 = Pₙ
Pₙ = 331 mmHg
Therefore, the pressure of nitrogen in the sample is 331 mmHg