Answer:
The covalent bond in Cl₂ is break and combine with sodium to form NaCl through ionic bond.
Explanation:
Chemical equation:
Na + Cl₂ → NaCl
Balanced chemical equation:
2Na + Cl₂ → 2NaCl
The given reaction indicate the formation of sodium chloride.
Sodium chloride is an ionic compound. It is formed by the reaction of chlorine and sodium. The type of bond in Cl₂ is covalent. Both chlorine atoms are tightly held together through sharing of electrons. When sodium chloride is formed the covalent between the chlorine atoms are break and it react with sodium . The chlorine toms thus gain the one electron from the sodium atom and became negative ion while sodium by losing its one valance electrons became positive ions. The strong electrostatic forces are develop between them and ionic bond is formed.
Answer:
the hydrogen atom of one water molecule and the lone pair of electrons on an oxygen atom of a neighboring water molecule.
Answer:
2 mol H₂O
Explanation:
With the reaction,
- 2H₂(g) + O₂(g) → 2 H₂O(g)
1.55 moles of O₂ would react completely with ( 2*1.55 ) 3.1 moles of H₂. There are not as many moles of H₂, thus H₂ is the limiting reactant.
Now we <u>calculate the moles of H₂O produced</u>, <em>starting from the moles of limiting reactant</em>:
- 2.00 mol H₂ *
= 2 mol H₂O
The molecules will be more separated, and will have least amount of intermolecular force of attraction.
<h3><u>Explanation:</u></h3>
The molecules inside the jar of Lilly are moving around each other. This means the state of the matter present inside the jar is liquid. As Lily gives more energy inside the jar , the molecules inside the jar will get more separated as the kinetic energy of the molecules increase and the intermolecular force of attraction decreases as well as the intermolecular separation or distance increase. As the energy is continued to be supplied from outside, there will be a time when this liquid will reaches boiling point and will start to change into gas. After this point the intermolecular force of attraction will be least among molecules and their separation will be maximum.
Answer: The final temperature in Kelvin is 1488
Explanation:
To calculate the final temperature of the system, we use the equation given by Gay-Lussac Law. This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial pressure and temperature of the gas.
are the final pressure and temperature of the gas.
We are given:

Putting values in above equation, we get:

Hence, the final temperature in Kelvin is 1488