Answer:
4200 Joules
Explanation:
Work done =force x distance
From the question , we’re given f =350N ,
d = 12m
Using the above formula, we have
Workdone = 350 x 12
= 4200 Joules
-di represents an image in front of a lens
Answer:
The focal lenth (F) =+10.0cm
Explanation:
The formular for combined focal length (F) is given as;

In this question,
F1 = 20cm
F2 = -30cm
Plugging the values into the formuar above,

![1/f = 0.05 - 0.033[tex]1/f = -0.017f = [tex]1/ -0.017](https://tex.z-dn.net/?f=1%2Ff%20%3D%200.05%20-%200.033%3C%2Fp%3E%3Cp%3E%5Btex%5D1%2Ff%20%3D%20-0.017%3C%2Fp%3E%3Cp%3Ef%20%3D%20%5Btex%5D1%2F%20-0.017)
f = 58.82cm
i.e. the combination behaves as a converging lens (because of the postive sign) of focal length 58.82cm .
Answer:
a) 145.6kgm^2
b) 158.4kg-m^2/s
c) 0.76rads/s
Explanation:
Complete qestion: a) the rotational inertia of the merry-go-round about its axis of rotation
(b) the magnitude of the angular momentum of the child, while running, about the axis of rotation of the merry-go-round and
(c) the angular speed of the merry-go-round and child after the child has jumped on.
a) From I = MK^2
I = (160Kg)(0.91m)^2
I = 145.6kgm^2
b) The magnitude of the angular momentum is given by:
L= r × p The raduis and momentum are perpendicular.
L = r × mc
L = (1.20m)(44.0kg)(3.0m/s)
L = 158.4kg-m^2/s
c) The total moment of inertia comprises of the merry- go - round and the child. the angular speed is given by:
L = Iw
158.4kgm^2/s = [145kgm^2 + ( 44.0kg)(1.20)^2]
w = 158.6/208.96
w = 0.76rad/s