It has been hypothesized, and some studies have supported the conjecture,
that certain species of insects and birds are able to sense the direction of external
magnetic fields.
I don't think there is any such notion where human beings are concerned.
Answer:
<em>B) The disturbance of particles in an area.</em>
Explanation:
<em>A wave involves transmission of energy from one place to another by the actual disturbance of the particles of the medium.</em>
<em />
Answer:
<h2>
3338.98 kg/m³</h2>
Explanation:
The formula for calculating the relative density of a substance is expressed as
Relative density of a liquid = Density of the liquid /density of water
Given relative density of a liquid = 0.34
Density of water 997kg/m³
Substituting into the formula we have;
Density of the liquid = Relative density of a liquid * density of water
Density of the liquid = 0.34 * 997
Density of the liquid = 3338.98 kg/m³
Answer:
Explanation: In DC circuit, the current will flow for a short time, which is required to charge the capacitor. Once you switch it on, it spikes and the gradually decreases to almost zero (0) as the capacitor becomes fully charged.
In an AC circuit, the circuit acts as if the current is flowing throw the plates whereas is not actually flowing. The circuit acts like the AC is flowing through the capacitor.
Answer:
The correct option is;
A. Circular
Explanation:
Some of the light that impinges on the surface are reflected and the rest are transmitted to a different medium
At the surface of the next medium also, some of the light are transmitted while the others are reflected and refracted through the first medium
The speed of light (and hence the wavelength and color) refracted through the thin film is changed as the distance the refracted light travels through the thin film is increased as we move away from the point directly in the front view to some distance as the reflected light path from those distance to the eye is increased due to their inclination giving them a different wavelength which are all equal at a radial distance from the eye hence forming a circular fringes.