- La velocidad de las ondas sonoras es aproximadamente 1469,694 metros por segundo.
- La longitud de onda de las ondas sonoras es 1,470 metros.
1) Inicialmente, debemos determinar la velocidad de las ondas sonoras a través del agua (
), en metros por segundo:
(1)
Donde:
- Módulo de compresibilidad, en newtons por metro cuadrado.
- Densidad del agua, en kilogramos por metro cúbico.
Si sabemos que
y
, entonces la velocidad de las ondas sonoras es:


La velocidad de las ondas sonoras es aproximadamente 1469,694 metros por segundo.
2) Luego, determinamos la longitud de onda (
), en metros, mediante la siguiente fórmula:
(2)
Donde
es la frecuencia de las ondas sonoras, en hertz.
Si sabemos que
y
, entonces la longitud de onda de las ondas sonoras es:


La longitud de onda de las ondas sonoras es 1,470 metros.
Para aprender más sobre las ondas sonoras, invitamos a ver esta pregunta verificada: brainly.com/question/1070238
Gravitational potential energy is associated with the shape or position of an object.
1.)When an object is placed at height h above ground, gravitational potential energy associated with it is given by,
P.E = mgh
2.)In projectile motion during upward motion, kinetic energy of object is converted into potential energy.
Average speed = (total distance) / (time to cover the distance)
We know:
Average speed = 65 km/hr
Total distance = 1,000 km
Time to cover it = (Driving Time) + 4 hours.
so we can write:
65 km/hr = (1,000 km) / (Driving Time + 4hr)
(I'm going to start calling the driving time 'DT'.
Notice that DT is a number with the units of 'hours'.)
Multiply each side by (DT + 4hr)
(65 km/hr) (DT + 4hr) = 1,000 km
Eliminate parentheses on the left side:
(65·DT km + 260 km) = 1,000 km
Subtract 260km from each side:
65·DT km = 740 km
Divide each side by 65 :
DT = 11.38 hours .
DT (Driving Time) is the time you spent actually driving.
You had to cover the complete 1,000 km in that time.
So while you were driving, you had to do it at a speed of
1,000 km / 11.38 hrs = 87.8 km/hr .
__________________________________________
As long as we're already totally bored by this question,
let's work on it some more, and check my answer:
... Driving for 11.38 hours at a speed of 87.8 km/hr, you cover
(11.38 hr) x (87.8 km/hr) = 999.164 km (close enough to 1,000) .
So far, so good. The distance is taken care of.
With the 4-hour stop, the total trip takes 4 more hours = 15.38 hours.
So the average speed is
(1,000 km) / (15.38 hr) = 65.02 km/hr
Close enough to 65 km/hr. yay !
Answer:

Explanation:
Needed torque can be estimated by means of the Theorem of Angular Momentum Conservation and Impact Theorem. The center of mass of the system is:


Let assume that both masses can be modelled as particles, then:
![[(1.51\,kg)\cdot (0.923\,m)^{2} + (1.97\,kg)\cdot (0.707\,m)^{2}]\cdot (38\,\frac{rev}{min} )\cdot (\frac{2\pi\,rad}{1\,rev} )\cdot (\frac{1\,min}{60\,s} ) -T\cdot (7.5\,s) = 0\,\frac{kg\cdot m^{2}}{s}](https://tex.z-dn.net/?f=%5B%281.51%5C%2Ckg%29%5Ccdot%20%280.923%5C%2Cm%29%5E%7B2%7D%20%2B%20%281.97%5C%2Ckg%29%5Ccdot%20%280.707%5C%2Cm%29%5E%7B2%7D%5D%5Ccdot%20%2838%5C%2C%5Cfrac%7Brev%7D%7Bmin%7D%20%29%5Ccdot%20%28%5Cfrac%7B2%5Cpi%5C%2Crad%7D%7B1%5C%2Crev%7D%20%29%5Ccdot%20%28%5Cfrac%7B1%5C%2Cmin%7D%7B60%5C%2Cs%7D%20%29%20-T%5Ccdot%20%287.5%5C%2Cs%29%20%3D%200%5C%2C%5Cfrac%7Bkg%5Ccdot%20m%5E%7B2%7D%7D%7Bs%7D)
The torque needed to stop the system is:
