A molecular orbital that decreases the electron density between two nuclei is said to be <u>antibonding.</u>
The bonding orbital, which would be more stable and encourages the bonding of the two H atoms into
, is the orbital that is located in a less energetic state than just the electron shells of the separate atoms. The antibonding orbital, which has higher energy but is less stable, resists bonding when it is occupied.
An asterisk (sigma*) is placed next to the corresponding kind of molecular orbital to indicate an antibonding orbital. The antibonding orbital known as * would be connected to sigma orbitals, as well as antibonding pi orbitals are known as
* orbitals.
Therefore, molecular orbital that decreases the electron density between two nuclei is said to be <u>antibonding.</u>
<u></u>
Hence, the correct answer will be option (b)
<u />
To know more about molecular orbital
brainly.com/question/13265432
#SPJ4
<u />
<u />
The total mass of the products is 10.76 g + 204.44 g = 215.20 g.
The masses of all the reactants but one are known so,
215.20 g - 120.00 g - 8.15 g - 75.00 g = 12.05 g
12.05 g is the mass of the unweighed barium nitrate.
2HCO3 - + Ca2+ CaCO3 + CO2 + H2O Bicarbonate (HCO3-) combines with calcium ions in the water to make calcium carbonate (CaCO3, limestone). This process can occur both within organisms such as corals or as a simple chemical reaction in the water itself.
1 kilo joule = 0.239006 calories
134 kilo joule = 134 x 0.239006
= 32.026804 calories
Answer:
orbital
Explanation:
electrons are found in an orbital