Answer:
0.1 g/dl
Explanation:
The standard curve is a graph that relates the absorbance at 400 nm with the concentration of haemoglobin in mg/dl. To obtain the concentration from the absorbance value, we enter in the x-axis (absorbance at 400 nm) with the value 0.40 (the line between 0.2 and 0.6), we extrapolate the line to the curve and read the correspondent value on y-axis (concentration in mg/dl): 100 mg/dl.
So, we convert the concentration from mg/dl to g/dl by dividing into 1000:
100 mg/dl x 1 g/1000 mg = 0.1 g/dl
Therefore, the concentration of haemoglobin of the patient is 0.1 g/dl.
The 3 and 2 to the right of the components are subscriptions.
Answer:
Zinc
Explanation:
The specific heat capacity can be described as the amount of heat required to raise the temperature of a substance by one degrees Celsius. It is represented by C or S. The greater the carrying capacity of a substance, the more will be the heat required for that substance.
As we can see in the information given in the question, the specific heat capacity of zinc is the lowest as compared to steel, water and aluminium. Hence, zinc is the correct option.
Answer: decomposition
Explanation:
1 . Combustion is a type of chemical reaction in which a hydrocarbon reacts with oxygen to form carbon dioxide ans water along with liberation of large amount of energy.
2. Decomposition is a type of chemical reaction in which a single reactant gives two or more than two products.

3. Single replacement is a type of chemical reaction in which a more reactive element displaces the less reactive element from its slat solution.
4. Synthesis is a type of chemical reaction in which two or more than two reactants combine together to give a single product.
Answer:
See the answer below
Explanation:
Even though plants are rooted in the ground, they still move, exert <u>force,</u> and do<u> work</u>.
Plant cells have very strong cell walls that allow <u>pressure</u> to build up inside of the cell as water is absorbed. This pressure is called <u>turgor</u>.
When turgor pressure is high enough in a cell, the cell walls become <u>firm</u> and as a result, the cell becomes rigid and the plant is able to stand <u>tall</u> and<u> straight</u>.
When a plant does not get enough water, the turgor pressure inside of the cells <u>decreases.</u> A decrease in <u>pressure</u> pushing against the cell wall causes the cells to lose their <u>shape</u> and <u>shrink</u>. This causes the plant to begin to droop or <u>wilt</u>.
When the wilted plant gets enough water, the cells will become rigid again, and the plant will stand firm and straight once again.