Answer:
v = 4.4271 m/s
Explanation:
Given
m = 3 Kg
R = 0.2 m
∅ = 15°
h = 1.5 m
g = 9.8 m/s²
v = ?
Ignoring frictional losses, at the bottom of the plane
Total kinetic energy is = Potential Energy at the top of plane
Using Law of conservation of energy we have
U = Kt + Kr
m*g*h = 0.5*m*v² + 0.5*I*ω²
knowing that
Icylinder = 0.5*m*R²
ω = v/R
we have
m*g*h = 0.5*m*v² + 0.5*(0.5*mR²)*(v/R)² = 0.75*m*v²
⇒ v = √(g*h/0.75) = √(9.8 m/s²*1.5 m/0.75)
⇒ v = 4.4271 m/s
Answer:
Explanation:
We shall apply conservation of mechanical energy .
initial kinetic energy = 1/2 m v²
= .5 x m x 12 x 12
= 72 m
This energy will be spent to store potential energy . if h be the height attained
potential energy = mgh , h is vertical height attined by block
= mg l sin20 where l is length up the inclined plane
for conservation of mechanical energy
initial kinetic energy = potential energy
72 m = mg l sin20
l = 72 / g sin20
= 21.5 m
deceleration on inclined plane = g sin20
= 3.35 m /s²
v = u - at
t = v - u / a
= (12 - 0) / 3.35
= 3.58 s
it will take the same time to come back . total time taken to reach original point = 2 x 3.58
= 7.16 s
Answer:
Explanation:
The formula for hydrogen atomic spectrum is as follows
energy of photon due to transition from higher orbit n₂ to n₁

For layman series n₁ = 1 and n₂ = 2 , 3 , 4 , ... etc
energy of first line

10.2 eV
wavelength of photon = 12375 / 10.2 = 1213.2 A
energy of 2 nd line

= 12.08 eV
wavelength of photon = 12375 / 12.08 = 1024.4 A
energy of third line

12.75 e V
wavelength of photon = 12375 / 12.75 = 970.6 A
energy of fourth line

= 13.056 eV
wavelength of photon = 12375 / 13.05 = 948.3 A
energy of fifth line

13.22 eV
wavelength of photon = 12375 / 13.22 = 936.1 A
The force that holds the gases in the sun. The force that causes a ball you throw in the air to come down again