<span>Notice for the Carbon question they were the same element and the shared the same number of protons. so i think d. is the answer</span>
Split the operation in two parts. Part A) constant acceleration 58.8m/s^2, Part B) free fall.
Part A)
Height reached, y = a*[t^2] / 2 = 58.8 m/s^2 * [7.00 s]^2 / 2 = 1440.6 m
Now you need the final speed to use it as initial speed of the next part.
Vf = Vo + at = 0 + 58.8m/s^2 * 7.00 s = 411.6 m/s
Part B) Free fall
Maximum height, y max ==> Vf = 0
Vf = Vo - gt ==> t = [Vo - Vf]/g = 411.6 m/s / 9.8 m/s^2 = 42 s
ymax = yo + Vo*t - g[t^2] / 2
ymax = 1440.6 m + 411.6m/s * 42 s - 9.8m/s^2 * [42s]^2 /2
ymax = 1440.6 m + 17287.2m - 8643.6m = 10084.2 m
Answer: ymax = 10084.2m
Answer:
To calculate the atomic mass of a single atom of an element, add up the mass of protons and neutrons. Example: Find the atomic mass of an isotope of carbon that has 7 neutrons. You can see from the periodic table that carbon has an atomic number of 6, which is its number of protons.
Explanation:
As per Bernuolli's Theorem total energy per unit mass is given as

now from above equation




now by above equation


Part B)
Now energy per unit weight



Answer:
if I aint wrong it would 2nd one