Answer:

Explanation:
Given:
- mass of rocket,

- time of observation,

- mass lost by the rocket by expulsion of air,

- velocity of air,

<u>Now the momentum of air will be equal to the momentum of rocket in the opposite direction: </u>(Using the theory of elastic collision)



Answer:
a
The radial acceleration is 
b
The horizontal Tension is 
The vertical Tension is 
Explanation:
The diagram illustrating this is shown on the first uploaded
From the question we are told that
The length of the string is 
The mass of the bob is 
The angle made by the string is 
The centripetal force acting on the bob is mathematically represented as

Now From the diagram we see that this force is equivalent to
where T is the tension on the rope and v is the linear velocity
So

Now the downward normal force acting on the bob is mathematically represented as

So

=> 
=> 
The centripetal acceleration which the same as the radial acceleration of the bob is mathematically represented as

=> 
substituting values


The horizontal component is mathematically represented as

substituting value

The vertical component of tension is

substituting value

The vector representation of the T in term is of the tension on the horizontal and the tension on the vertical is

substituting value
![T = [(0.3294) i + (3.3712)j ] \ N](https://tex.z-dn.net/?f=T%20%20%3D%20%5B%280.3294%29%20i%20%20%2B%20%283.3712%29j%20%5D%20%5C%20%20N)
Answer: 750 kgm/s
Explanation:
Mass of object = 25 kg
Speed by which object moves =30 m/s. Linear momentum of the object = ?
Since momentum refers to the quantity of motion of the moving object,
Linear momentum = Mass x Speed
= 25kg x 30m/s
= 750 kgm/s
Thus, the linear momentum of the object is 750 kgm/s
The answer is c because the farther apart they are the greater there gravity is