Take for example driving by with a cake in your hand, then dropping it while going 30 mph. It will not drop directly down, it will gradually go in the direction you were driving while falling.
This is true I believe, if I'm interpreting correctly.
Answer: 14. 49 m
Explanation:
We can solve this problem with the following equations:
(1)
(2)
Where:
is the horizontal distance between the cannon and the ball
is the cannonball initial velocity
since the cannonball was shoot horizontally
is the time
is the final height of the cannonball
is the initial height of the cannonball
is the acceleration due gravity
Isolating
from (2):
(3)
(4)
(5)
Substituting (5) in (1):
(6)
Finally:
Finding acceleration= final speed-initial speed/time taken (or A=V-U\T)
Finial speed= 27.8s
Initial speed= 0s
Time taken= 5.15
So..
27.8-0/5.15= 5.40m/s (rounded to two decimal places)
Force=mass*acceleration
F=ma
F=25*5
F=100 N
Answer:
The average induced emf in the coil is 0.0286 V
Explanation:
Given;
diameter of the wire, d = 11.2 cm = 0.112 m
initial magnetic field, B₁ = 0.53 T
final magnetic field, B₂ = 0.24 T
time of change in magnetic field, t = 0.1 s
The induced emf in the coil is calculated as;
E = A(dB)/dt
where;
A is area of the coil = πr²
r is the radius of the wire coil = 0.112m / 2 = 0.056 m
A = π(0.056)²
A = 0.00985 m²
E = -0.00985(B₂-B₁)/t
E = 0.00985(B₁-B₂)/t
E = 0.00985(0.53 - 0.24)/0.1
E = 0.00985 (0.29)/ 0.1
E = 0.0286 V
Therefore, the average induced emf in the coil is 0.0286 V