The question is what numbers satisfy A ∩ C.
The symbol ∩ means intersection, .i.e. you need to find the numbers that belong to both sets A and C. Those numbers might belong to the set C or not, because that is not a restriction.
Then lets find the numbers that belong to both sets, A and C.
Set A: perfect squares from A to 100:
1^2 = 1
2^2 = 4
3^2 = 9
4^2 = 16
5^2 = 25
6^2 = 36
7^2 = 49
8^2 = 64
9^2 = 81
10^2 = 100
=> A = {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}
Set C: perfect fourths
1^4 = 1
2^4 = 16
3^4 = 81
C = {1, 16, 81?
As you see, all the perfect fourths are perfect squares, so the intersection of A and C is completed included in A. this is:
A ∩ C = C or A ∩ C = 1, 16, 81
On the other hand, the perfect cubes are:
1^3 = 1
2^3 = 8
3^3 = 27
4^3 = 81
B = {1, 8, 27, 81}
That means that the numbers 1 and 81 belong to the three sets, A, B, and C.
In the drawing you must place the number 16 inside the region that represents the intersection of A and C only, and the numbers 1 and 81 inside the intersection of the three sets A, B and C.
Answer:
11x - 8
Step-by-step explanation:
If you have x- + 5 - 13 + 12x, all we are doing is combining like terms. First, 5 - 13 = -8. Then, -x + 12x is the same as doing 12x - x. That gives us 11x. The answer would be 11x - 8 when you put -8 and 11x together in the expression.
Answer:
4(a + b) - 5
Step-by-step explanation:
Pull out the common factor
Step-by-step explanation:
Area =0.5×base×height
Area= 0.5×5×3=7.5ft
Please ask some questions and I will assist to the best of my abilities. <span />