Let L and W be the length and width of the given rectangle, respectively. Perimeter is calculated through the equation,
P = 2L + 2W
Substituting the perimeter,
36 = 2L + 2W
Simplifying,
18 = L + W
The area is calculated by multiplying the length and width as below,
A = 80 = LW
Substituting the expressions,
80 = (L)(18 - L)
The value of L from the equation is 8. With this, the value of W is equal to 10.
Therefore, the dimensions of the rectangle are 8 m by 10 m.
Answer:
she is incorrect because if she was given a 20% discount the amount she would have to pay is 38.4
Step-by-step explanation:
48 x .2 = 9.6
48 - 9.6 = 38.4 not 40
Answer: (751.05, 766.95)
Step-by-step explanation:
We know that the confidence interval for population mean is given by :-
,
where
=population standard deviation.
= sample mean
n= sample size
z* = Two-tailed critical z-value.
Given : 
n= 42

We know that from z-table , the two-tailed critical value for 99% confidence interval : z* =2.576
Now, the 99% confidence interval around the true population mean viscosity :-
![759\pm (2.5760)\dfrac{20}{\sqrt{42}}\\\\=759\pm (2.5760)(3.086067)\\\\=759\pm7.9497=(759-7.9497,\ 759+7.9497)\]\\=(751.0503,\ 766.9497)\approx(751.05,\ 766.95)](https://tex.z-dn.net/?f=759%5Cpm%20%282.5760%29%5Cdfrac%7B20%7D%7B%5Csqrt%7B42%7D%7D%5C%5C%5C%5C%3D759%5Cpm%20%282.5760%29%283.086067%29%5C%5C%5C%5C%3D759%5Cpm7.9497%3D%28759-7.9497%2C%5C%20759%2B7.9497%29%5C%5D%5C%5C%3D%28751.0503%2C%5C%20766.9497%29%5Capprox%28751.05%2C%5C%20766.95%29)
∴ A 99% confidence interval around the true population mean viscosity : (751.05, 766.95)
Answer:
c
Step-by-step explanation:
combine like terms
3x^3-8x^3=-5x^3
+2x^2
-5x+3x=-2x
-5x^3+2x^2-2x
Use the midpoint formula,
(x1+x2/2,y1+y2/2)
(-1-5/2,1-3/2)
(-6/2,-2/2)
(-3,-1)