In order to calculate the molar mass of the protein, we may manipulate the ideal gas equation:
PV = nRT, where n is the number of moles. We also know that:
n = m / Mr, where m is mass and Mr is molecular weight
Thus,
Mr = (mRT)/(PV)
Here, the mass is in grams, the temperature is in Kelvin, the pressure is in atm and the volume is in liters, so the molar gas constant is 0.082057.
Mr = (3.6 * 0.082057 * (27 + 273)) / (0.0203 * 0.2)
Mr = 21,828 g/mol
Thus, the Mr of the protein is 2.18 x 10⁴ g/mol
Answer:
A and C are true , B and D are false
Explanation:
For A)
from the first law of thermodynamics (in differential form)
dU= δQ - δW = δQ - PdV
from the second law
dS ≥ δQ/T
then
dU ≤ T*dS - p*dV
dU - T*dS + p*dV ≤ 0
from the definition of Gibbs free energy
G=H - TS = U+ PV - TS → dG= dU + p*dV + V*dp - T*dS - S*dT
dG - V*dp + S*dT = dU - T*dS + p*dV ≤ 0
dG ≤ V*dp - S*dT
in equilibrium, pressure and temperature remains constant ( dp=0 and dT=0). Thus
dG ≤ 0
ΔG ≤ 0
therefore the gibbs free energy should decrease in an spontaneous process → A reaction with a negative Gibbs standard free energy is thermodynamically spontaneous under standard conditions
For B) Since the standard reduction potential is related with the Gibbs standard free energy through:
ΔG⁰=-n*F*E⁰
then, when ΔG⁰ is negative , E⁰ is positive and therefore a coupled redox reaction with a positive standard reduction potential is thermodynamically spontaneous.
From the given chemical equation we see that 43 kcal of
energy is needed for every 2 moles of NO. First let us calculate the moles of
NO with a molar mass of 30 g/mol.
moles NO = 112 g / (30 g/mol) = 3.73 mol
So the total heat absorbed is:
heat = (43 kcal / 2 mol) * 3.73 mol
<span>heat = 80.195 kcal</span>
Answer:
70
Explanation:
20 x 5 vials = 100mg
therefore 5 vials required each day.
Two weeks = 14 days
14 days x 5 vials = 70 vials
Just so u know I do not know this for sure
carbon
potassium
phosphorus
plz tell if I'm right , if you know