Answer:
Soluble salts can be made by reacting acids with soluble or insoluble reactants. Titration must be used if the reactants are soluble. Insoluble salts are made by precipitation reactions.
Making insoluble salts
An insoluble salt can be prepared by reacting two suitable solutions together to form a precipitate.
Determining suitable solutions
All nitrates and all sodium salts are soluble. This means a given precipitate XY can be produced by mixing together solutions of:
X nitrate
sodium Y
For example, to prepare a precipitate of calcium carbonate:
X = calcium and Y = carbonate
mix calcium nitrate solution and sodium carbonate solution together
calcium nitrate + sodium carbonate → sodium nitrate + calcium carbonate
Ca(NO3)2(aq) + Na2CO3(aq) → 2NaNO3(aq) + CaCO3(s)
It also works if potassium carbonate solution or ammonium carbonate solution is used instead of sodium carbonate solution. Remember that all common potassium and ammonium salts are soluble.
please mark as brainliest
Explanation:
Answer:
Ksp = 1.07x10⁻²¹
Explanation:
Molar solubility is defined as moles of solute can be dissolved in 1L.
Ksp for NiS is defined as:
NiS(s) ⇄ Ni²⁺(aq) + S²⁻(aq)
Ksp = [Ni²⁺] [S²⁻]
As molar solubility is 3.27x10⁻¹¹M, concentration of [Ni²⁺] and [S²⁻] is 3.27x10⁻¹¹M for both.
Replacing:
Ksp = [3.27x10⁻¹¹M] [3.27x10⁻¹¹M]
<em>Ksp = 1.07x10⁻²¹</em>
<em></em>
Answer: Out of the given options bonds connecting atoms in reactants break, and bonds connecting atoms in products form are the changes which takes place when a chemical change occurs.
Explanation:
A change that leads to the change in chemical composition of a substance is called a chemical change.
For example, 
Here, bond between the reactant atoms nitrogen and hydrogen is broken down.
On the other hand, bond connecting the products that is
and
is formed.
Thus,, we can conclude that out of the given options bonds connecting atoms in reactants break, and bonds connecting atoms in products form are the changes which takes place when a chemical change occurs.
Answer:
The system gains 126100 J
Explanation:
The heat can be calculated by the equation:
Q = nxCxΔT, where Q is the heat, C is the heat capacity,n is the number of moles and ΔT is the variation of temperature (final - initial). The number of moles is the mass divided by the molar mass, so:
n = 250/4 = 62.5 mol.
The system must be in thermal equilibrium with the surroundings, so if the temperature of the surroundings decreased 97 K, the temperature of the system increased by 97 K, so ΔT = 97 K
Q = 62.5x20.8x97
Q = 126100 J