Answer:
C. 10⁻³ rads
Explanation:
Here, we shall use Rayleigh's Criterion to find out the angular resolution of Cat's eye during day light. Rayleigh's Criterion is written as follows:
θ = λ/a
where,
θ = angular resolution of Cat's eye = ?
λ = wavelength = 500 nm = 5 x 10⁻⁷ m
a = slit width of eye = 0.5 mm = 5 x 10⁻⁴ m
Therefore,
θ = (5 x 10⁻⁷ m/5 x 10⁻⁴ m)
Therefore,
θ = 0.001
θ = Sin⁻¹(0.001)
θ = 0.001 rad = 1 x 10⁻³ rad
Hence, the correct answer is:
<u>C. 10⁻³ rads</u>
Answer:
In a way it does, but overall, there are many factors that affect your rank. In general, and talking about the average Platinum II, they are pretty decent according to casual player standards.
Explanation:
From the picture, I see that you had no trouble at all with #4.
Well, #5, 6, and 7 are easily handled in exactly the same way.
Just as you did with #4, please sketch these on paper
as I walk you through the solutions. That'll help you see
immediately what's going on.
#5.b).
Traveling east at 3 m/s for 4 seconds,
he covers (3 m/s) x (4 sec) = 12 meters.
Traveling south at 5 m/s for 2 seconds,
he covers (5 m/s) x (2 sec) = 10 meters.
The total distance he covers is (12m + 10m) = 22 meters.
#5.c).
Average speed (scalar)
= (distance covered)/(time to cover the distance)
= (22 meters)/(6 sec) = 3-2/3 m/s .
#5.d).
Displacement (vector)
= distance between the start-point and the end-point,
regardless of the route traveled,
in the direction from the start-point to the end-point.
Distance from the start-point to the end-point =
√(12² + 10²) = √(144 + 100) = √(244) = 15.62 meters
in the direction of arctan(10/12) south of east
= 39.8° south of east.
#5.e).
Average velocity (vector) =
(displacement vector) / (time)
= 15.62 meters directed 39.8° south of east / 6 seconds
= 2.603 m/s directed 39.8° south of east.
#6).
Magnitude = √(5.2² + 2.1²) = √(27.04 + 4.41) = √31.45 = 5.608 km.
Direction = arctan(5.2/2.1) south of east
= 68° south of east = 158° bearing .
#7).
Magnitude = √(39² + 57²) = √(1521 + 3249) = √( 4770)
= 69.07 m/s .
Direction = arctan (57/39) south of west
= 55.6° south of west
Bearing = 214.4°
Compass: 0.65° past "southwest by south".
I'm grateful for the privilege and opportunity to practice my math,
and I shall cherish the bounty of 5 points that came with it.
If the car's motion appears as a horizontal line on a <u><em>position-time </em></u>graph, it shows that as time changes, the car's position doesn't change.
This is just a complicated way to say that the car is <em>not moving</em>.<em> (A)</em>