Path 2.
Displacement is the direction and magnitude of an object from its starting point, so path 2 is the direct route you would need to take to find direction and magnitude.
Friction occurs when the surfaces and heat of two surfaces grind against each other.
I think these are the answers
Answer:
In the electric field, the like charges repel each other, and the unlike charges attract each other, whereas in a magnetic field the like poles repel each other and the unlike poles attract each other.
Explanation:
A. The formula for mean free time is:
t = V/(4π√2 r²vN)
where
N = 1×10¹⁶ molecules (per m³)
V = 1 m³
r = 111×10⁻⁷m (atomic radius of silicon)
Let's solve for v first:
v = √(3RT/M) = √(3(8.314 m³·Pa/mol·K)(25 + 273 K)/28.1 g/mol Si)
v = 16.26 m/s
t = (1 m³)/(4π√2 (111×10⁻⁷m)²(16.26 m/s)(1×10¹⁶ molecules))
<em>t = 2.81×10⁻9 s</em>
<em>Pure silicon has a high resistivity relative to copper because copper is a conductor, while silicon is a semi-conductor. </em>
Answer:
Tension, T = 2038.09 N
Explanation:
Given that,
Frequency of the lowest note on a grand piano, f = 27.5 Hz
Length of the string, l = 2 m
Mass of the string, m = 440 g = 0.44 kg
Length of the vibrating section of the string is, L = 1.75 m
The frequency of the vibrating string in terms of tension is given by :





T = 2038.09 N
So, the tension in the string is 2038.09 N. Hence, this is the required solution.