Answer:
The object is most likely to be a (distant) galaxy
Explanation:
Distance of galaxies are often calculated based on the unit of light year.
The abbreviation, mpc which translates to mega parsec
A mega parsec is equivalent to 3.3 light years.
So, if the astronomer sighted the object from a distance of 28mpc which is equivalent to 28 * 3.3 light-years (92.4 light years); the object is most likely to be a galaxy; a distant galaxy
Answer:
1a) 857143 m
1b) 414 m
2a)
2b)
3) the medium of air has a wavelength of 0.334 m, the medium of water has a wavelength of 1.493 m, and the medium of 5.130 m.
Explanation:
Question 1a)
Given the velocity/speed, and frequency of the wave, the length can be calculated using these two quantites.
[ λ = v / f ] wavelength = <u>v</u>elocity of the wave / <u>f</u>requency of the wave in Hz.
Since 3 × 10^8 × ms^-1 is the velocity, and 350Hz is the frequency.
Anything to the negative power is reciprocated. i.e ms^-1 = m/s.
The wavelength is 300000000m/350Hz = 857142.8571428..... m ≈ 857143 m
Question 1b) Given that the frequency of the second wave in water is 1% of the first wave, and the speed of the second wave is 1450ms^-1
Therefore the second wave has a frequency of 1% of 3.5 = 350/100 Hz = 3.5 Hz
The wavelength is found using the same
formula: wavelength = 1450m/3.5Hz = 414.2857142857.... m ≈ 414 m
Question 2a)
Question 2b)
Question 3) Remember, the speed of sound of the medium = frequency of the medium × wavelength of the medium.
Therefore the wavelength of the medium = speed of sound of the medium / frequency of the medium. This has a similar correlation to the wavelength formula. We are given that all these mediums have a frequency of 1KHz = 1000Hz, where So the wavelength of each medium =
Question 4)
Answer:
Explanation:
Important here is to know that due north is a 90 degree angle, due east is a 0 degree angle, and due south is a 270 degree angle. Then we find the x and y components of each part of this journey using the sin and cos of the angles multiplied by each magnitude:
Add them all together to get the x component of the resultant vector, V:
Do the same to find the y components of the part of this journey:
Add them together to get the y component of the resultant vector, V:
One thing of import to note is that both of these components are positive, so the resultant angle lies in QI.
We find the final magnitude:
and, rounding to 2 sig dig's as needed:
1.0 × 10² m; now for the direction:
58°
Washing your hands and taking medicine
The answer for this question is negative externality