1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kati45 [8]
3 years ago
7

Energy that does not involve the large-scale motion or position of objects in a system is called:

Physics
1 answer:
Kryger [21]3 years ago
4 0
I believe the answer is C.
You might be interested in
A small sandbag is dropped from rest from a hovering hot-air balloon. (assume the positive direction is upward.) (a) after 1.5 s
marishachu [46]

solution:

We know v0 = 0, a = 9.8, t = 4.0. We need to solve for v

so,

we use the equation:

v = v0 + at

v = 0 + 9.8*4.0

v = 39.2 m/s

Now we just need to solve for d, so we use the equation:

d = v0t + 1/2*a*t^2

d = 0*4.0 + 1/2*9.8*4.0^2

d = 78.4 m

3 0
3 years ago
A parachutist falls 50.0 m without friction. When the parachute opens, he slows down at a rate of 67 m/s*2. If he reaches the gr
KIM [24]

Answer:

3.49 seconds

3.75 seconds

-43200 ft/s²

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

s=ut+\frac{1}{2}at^2\\\Rightarrow 50=0t+\frac{1}{2}\times 9.81\times t^2\\\Rightarrow t=\sqrt{\frac{50\times 2}{9.81}}\\\Rightarrow t=3.19\ s

Time the parachutist falls without friction is 3.19 seconds

v^2-u^2=2as\\\Rightarrow v=\sqrt{2as+u^2}\\\Rightarrow v=\sqrt{2\times 9.81\times 50+0^2}\\\Rightarrow v=31.32\ m/s

Speed of the parachutist when he opens the parachute 31.32 m/s. Now, this will be considered as the initial velocity

v=u+at\\\Rightarrow 11=31.32+9.81t\\\Rightarrow t=\frac{11-31.32}{-67}=0.3\ s

So, time the parachutist stayed in the air was 3.19+0.3 = 3.49 seconds

s=ut+\frac{1}{2}at^2\\\Rightarrow \frac{s}{2}=0t+\frac{1}{2}\times a\times t^2\\\Rightarrow \frac{s}{2}=\frac{1}{2}at^2

s=ut+\frac{1}{2}at^2\\\Rightarrow \frac{s}{2}=u1.1+\frac{1}{2}\times a\times 1.1^2

Now the initial velocity of the last half height will be the final velocity of the first half height.

v=u+at\\\Rightarrow v=at

Since the height are equal

\frac{1}{2}at^2=u1.1+\frac{1}{2}\times a\times 1.1^2\\\Rightarrow \frac{1}{2}at^2=at1.1+\frac{1}{2}\times a\times 1.1^2\\\Rightarrow 0.5t^2-1.1t-0.605=0\\\Rightarrow 500t^2-1100t-605=0

t=\frac{11\left(1+\sqrt{2}\right)}{10},\:t=\frac{11\left(1-\sqrt{2}\right)}{10}\\\Rightarrow t=2.65, -0.45

Time taken to fall the first half is 2.65 seconds

Total time taken to fall is 2.65+1.1 = 3.75 seconds.

When an object is thrown with a velocity upwards then the velocity of the object at the point to where it was thrown becomes equal to the initial velocity.

v^2-u^2=2as\\\Rightarrow a=\frac{v^2-u^2}{2s}\\\Rightarrow a=\frac{0^2-240^2}{2\times \frac{8}{12}}\\\Rightarrow a=-43200\ ft/s^2

Magnitude of acceleration is -43200 ft/s²

5 0
3 years ago
A hot brass plate is having its upper surface cooled by impinging jet of air at temperature of 15°c and convection heat transfer
Elodia [21]
200 degrees because I need the points
4 0
3 years ago
A good train took 7 hours to complete its journey. For the first 3 hours, it travelled an average speed of 186km/h. What was the
Sliva [168]
I really hope this helps

4 0
3 years ago
Two identical bowling balls are rolling on a horizontal floor without slipping. The initial speed of both balls is v = 10 m/s. B
Lapatulllka [165]

Answer:

The difference between frictionless ramp and a regular ramp is that on a frictionless ramp the ball cannot roll it can only slide, but on a regular ramp the ball can roll without slipping.

We will use conversation of energy.

K_A_1 + U_A_1 = K_A_2 + U_A_2\\\frac{1}{2}I\omega^2 + \frac{1}{2}mv^2 + 0 = 0 + mgH_A

Note that initial potential energy is zero because the ball is on the bottom, and the final kinetic energy is zero because the ball reaches its maximum vertical distance and stops.

For the ball B;

K_B_1 + U_B_1 = K_B_2 + U_B_2

\frac{1}{2}I_B\omega^2 + \frac{1}{2}mv^2 + 0 = 0 + mgH_B

The initial velocities of the balls are equal. Their maximum climbing point will be proportional to their final potential energy. Since their initial kinetic energies are equal, their final potential energies must be equal as well.

Hence, both balls climb the same point.

Explanation:

4 0
3 years ago
Other questions:
  • Which of the following planets helped astronomers locate another planet?
    8·1 answer
  • Imagine a Carnot engine has a hot reservoir of 680 K and a cold reservoir of 220 K. What is the efficiency of the engine? 58.3%
    14·2 answers
  • With an average surface temperature of about 737 K, _______ is the hottest planet.
    8·2 answers
  • Two objects, T and B, have identical size and shape and have uniform density. They are carefully placed in a container filled wi
    9·1 answer
  • A. Draw the wave that results when the two waves shown interact through destructive interference. (Image attached)
    9·2 answers
  • What does the slope on a speed vs. time graph represent
    10·1 answer
  • An electron is moving through an (almost) empty universe at a speed of 628 km,/s toward the only other object in the universe —
    12·1 answer
  • What causes infectious diseases?
    8·2 answers
  • HELPPPPPPPPPPP
    8·1 answer
  • True or false? Atoms are balanced because they have an equal number of electrons and protons
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!