(tan(<em>x</em>) + cot(<em>x</em>)) / (tan(<em>x</em>) - cot(<em>x</em>)) = (tan²(<em>x</em>) + 1) / (tan²(<em>x</em>) - 1)
… = (sin²(<em>x</em>) + cos²(<em>x</em>)) / (sin²(<em>x</em>) - cos²(<em>x</em>))
… = -1/cos(2<em>x</em>)
Then as <em>x</em> approaches <em>π</em>/2, the limit is -1/cos(2•<em>π</em>/2) = -sec(<em>π</em>) = 1.
7.67 is your answer. hope this helps, let me know if you need more help
Answer:
The answer to this would be .8
Step-by-step explanation:
A tenth is only one figure, and due to the rule of "5 and above give it a shove; 4 and below let it go", this number would round to 0.8.
Answer:
a is the answer
Step-by-step explanation: