Answer: Hello! Apparently, your question is incomplete. Those were sentences in which you had to complete with missing information, so here we go:
1- Our entire solar system orbits around the center of the MILKY WAY GALAXY about once every 230 million years.
2- The Milky Way and Andromeda galaxies are among a few dozen galaxies that make up our LOCAL GROUP.
3 - The Sun appears to rise and set in our sky because Earth ROTATES once each day.
4 - You are one year older each time Earth ORBITS about the Sun.
5 - On average, galaxies are getting farther apart with time, which is why we say our UNIVERSE is expanding.
6 - Our SOLAR SYSTEM is moving toward the star Vega about 70,000 km/hr.
After the collision, the momentum didn't change, so the total momentum in x and y are the same as the initial.
The x component was calculated by subtracting the initial momentum (total) minus the momentum of the first ball after the collision
In the y component, as at the beginning, the total momentum was 0 in this axis, the sum of both the first and struck ball has to be the same in opposite directions. In other words, both have the same magnitude but in opposite directions

This is for both balls after the collision, but one goes in a positive and the other in a negative direction.
RADIATION
There are three types of heat transfer or heat propagation; conduction, convection and radiation. Heat transfer is the process by which heat projects externally however, depending on the temperature and pressure. Also called the movement of heat from a low temperatured state which increases as heat progresses.
Conduction is the heat transfer by contact, immediate contact.
Convection is the transfer of heat through air and water.
<span>Radiation is the transfer of heat regardless of the presence of atoms or particles.<span>
</span></span>
Answer:
h=17357.9m
Explanation:
The atmospheric pressure is just related to the weight of an arbitrary column of gas in the atmosphere above a given area. So, if you are higher in the atmosphere less gass will be over you, which means you are bearing less gas and the pressure is less.
To calculate this, you need to use the barometric formula:

Where R is the gas constant, M the molar mass of the gas, g the acceleration of gravity, T the temperature and h the height.
Furthermore, the specific gas constant is defined by:

Therefore yo can write the barometric formula as:

at the surface of the planet (h =0) the pressure is ![P_0[\tex]. The pressure at the height requested is half of that:[tex]P=\frac{P_0}{2}](https://tex.z-dn.net/?f=P_0%5B%5Ctex%5D.%20The%20pressure%20at%20the%20height%20requested%20is%20half%20of%20that%3A%3C%2Fp%3E%3Cp%3E%5Btex%5DP%3D%5Cfrac%7BP_0%7D%7B2%7D)
applying to the previuos equation:

solving for h:
h=17357.9m
Answer:
Explanation:
When beam is balanced and not rotating with Suki standing on it , let reaction force on the supports be R₁ and R₂. Then
R₁ +R₂ = 336 + 590
= 929
Now the moment beam begins to tip , reaction on distant support R₁ = 0
only R₂ will exists on the support near to Suki.
Taking torque about this support of weight of beam acting from the middle point and weight of suki of 590N ,who is x distance from the support towards the other end.
336 x 1.5 = 590 x
x = .85 m
ie , from second support , Suki can not go beyond a distance of .85 m towards the second end.