The flow will be laminar if Reynold's number
is less than 2000.
Use the Reynold's formula and rearrange to calculate velocity of water in the pipe.

Where,
is velocity of the fluid,
is the diameter of pipe, and
is the kinematic viscosity i.e.
for water at 288.7 K from Appendix.
So, velocity is:

The flow rate <em>Q</em>:
[/tex]
Where A is the area of cross section of pipe.
The time taken to fill is:

Where V is the capacity of the tank.
Answer:
476.387 Hz
714.583 Hz
Explanation:
L = Length of tube
v = Speed of sound in air = 343 m/s
Frequency for a closed tube is given by

The frequency is 476.387 Hz
If it was one third full 

The frequency is 714.583 Hz
Answer:
-0.383 m
Explanation:
Diameter of cylinder = 4m therefore r = 2
height of cylinder ( H ) = 4 m
specific gravity = 0.6 ( assumed )
depth of immersion = 'h'
<u>Determine the metacentric height </u>
weight of cylinder in water = water displaced
= 0.6 * 1000 * πr^2* H = 1000 * πr^2* h
= 0.6 * 4 = h
∴ h = 2.4 m
hence the depth of center of buoyancy from free space = h /2 = 1.2 m
The metacentric height can be calculated using the formula below
Gm = Io / Vsubmerged - BG
attached below is the remaining solution
Answer:
0J
Option: B
Explanation:
Work is done when something is moved by the force in the direction of the force. That is the force (e.g., the weight) and the direction the object moves must be aligned for work to be done. In this given condition, the direction is horizontal and the force is downward as its gravity force. That 90° between the two vectors.
The work function is W = m × g ×h × cosθ

Hence,
Work done = 7 × 9.8 × 1.5 × cos(90)
Work done = 0 (cos
= 0)
Work done = 0
Therefore work done is 0 J.
Answer:
B. The mass of Mars is less than the mass of Earth.
Explanation:
Mass of an object is the constant anywhere in the universe.
The weight of an object is equal to the gravitational force acting on it.
Weight is given by

where
G = Gravitational constant
M = Mass of Planet
R = Radius of planet
m = Mass of object
g = Acceleration due to gravity
So weight of an object depends on the acceleration due to gravity on that planet. The acceleration due to gravity depends on the mass and radius of the planet.
The weight of the object is less on Mars because mars has less mass compared to Earth.